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INTRODUCTION 

Notes on this edition 

CUNY’s School of Professional Studies’ version of Concepts in Statistics is a replication of a highly interactive, 
openly licensed textbook first offered under a CC-BY license by the Online Learning Initiative. We built our 
copy from Lumen Learning’s openly licensed version, which attributes the OLI and a handful of other sources, 
as noted on each page of the textbook. 

We chose to replicate this Open Educational Resource (OER) to facilitate use and adaptations by faculty at 
CUNY SPS and around the world. If you choose to adopt or adapt the course, we hope you’ll read through 
these notes to identify opportunities for greater open practice, improvement, and customization. 

Organization 

This version of Concepts in Statistics preserves the organization of the original with two exceptions. First, all 
module assignments are now located at the end of the textbook rather than in the modules themselves. This 
choice was made to allow instructors to decide which assignments to offer. These assignments include data 
sets still linked to the Lumen originals. Second, the Lumen version offers six StatTutor explorations to support 
student learning that are not included here. 

Ideas for OER, Open Pedagogy, and DEIA Practice 

If your institution has a Pressbooks network, you can clone this text and take full advantage of its open license 
and potential for open pedagogy. You might choose to: 

• Alter the examples, images, and names to reflect greater diversity (we have already altered a few names 
and pronouns) 

• Add examples or provide text to address the issue of gender represented solely as binary in this text, its 
data sets, and data collection in general 

• Invite students to edit, critique, or publicly annotate the text, especially for chapters whose data explores 
race, gender, or body image 

• Invite students to take advantage of Pressbooks’ glossary function to create a glossary for each chapter 
• Invite students to create and share openly licensed question sets, discussion questions, or other ancillary 
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materials to accompany the text 
• Share your revisions as OER 

Known Accessibility Issues 

As a highly interactive and adapted text, this Pressbooks edition includes some inherited accessibility issues that 
we are currently unable to address: 

• Missing or inadequate alt text. While alt text is provided for most images, not all provide enough 
detail for students to process meaningfully the visual representation of data. The simulations and image-
reliant H5P interactives do not include alt text. 

• LaTeX use. We have rendered mathematical formulas and expressions using Pressbooks’ LaTeX editor, 
which we believe makes them screen-reader accessible via MathJax. However, those formulas will not be 
screen-reader friendly if students are using the Pressbooks-generated PDF of the text or are investigating 
H5P interactives, where the equation editor is unavailable. 

We welcome the assistance of subject matter experts willing to write alt text for any of our images or 
simulations. Please feel free to learn more about the challenge of writing alt text for data visualizations, W3C’s 
recommendations for writing alt text for complex images, and the POET training tool for writing alt text 
for math images. If you are willing to share alt text of images or simulations with us, please reach out to 
facultysupport@sps.cuny.edu. 

Simulation Use 

Concepts in Statistics includes over 40 simulations that are integral to student learning and in some cases 
required in order to complete the interactive questions in the text. They are directly embedded in the 
Pressbooks pages and links are provided to view them in a separate tab. (For phone users, note that these 
simulations were built to be responsive in landscape view.) 

We copied the source code for these simulations from the openly licensed Lumen source. We have stored 
these simulations in an open GitHub repository hosted by the Office for Faculty Development and 
Instructional Technology at CUNY’s School of Professional Studies. We were unsuccessful in copying two 
sims (Distribution of Sample Means 1 of 4 and Distribution of Sample Proportions 1 of 6), so those remain 
linked to the Lumen versions. One sim (Another Look at Probability) was offered via Geogebra and remains 
so. However, copies of the source files for all three of these sims are available on our GitHub repository, in case 
you want to tinker and succeed where we didn’t. 
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Ancillary Materials 

Please feel free to adopt or adapt our MyOpenMath course associated with this text book or the Quizlet sets 
built out for vocabulary support of most chapters. You will need to sign up for a free account on each platform 
to access the materials. 

Feedback 

Please reach out to us if you’d like to provide feedback or share any remixes or materials to improve our version 
of this textbook. We are available at facultysupport@sps.cuny.edu. 
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COPYRIGHT PAGE 

This Pressbook was built from Lumen’s Concepts in Statistics which is a CC-BY licensed version of the Open Learning Initiative’s Concepts of 
Statistics originally CC-BY licensed but now under a paywall. In addition to the content from the OLI text, the following are also openly 
licensed as indicated: 

• Probability simulation offered on Another Look at Probability (2 of 2) is from GeoGebra, licensed CC 
BY SA 

• Inferential Statistics Decision Making Table offered on Introduction to Hypothesis Testing and repeated 
on Hypothesis Testing (5 of 5) is from Wikimedia Commons and adapted by Lumen Learning, licensed 
CC BY: Attribution 

• The Learning During the Pandemic interactive offered on Hypothesis Testing (2 of 5) and repeated on 
Hypothesis Testing (3 of 5) includes an array of openly licensed licensed components—all public 
domain, CC-BY, or CC-BY-SA—under “Rights of Use” 

• The Hypothesis Testing interactive offered on Hypothesis Testing (4 or 5) includes an array of openly 
licensed licensed components—all public domain, CC-BY, or CC-BY-SA—under “Rights of Use” 

• The What Is a P Value interactive offered on Hypothesis Test for a Population Proportion (2 of 3) 
includes an array of openly licensed licensed components—all public domain, CC-BY, or CC-BY-
SA—under “Rights of Use” 

• The My Results Are Statistically Significant interactive offered on Hypothesis Test for a Population 
Proportion (3 of 3) includes an array of openly licensed licensed components—all public domain or 
CC-BY—under “Rights of Use” 

• The Describing a Distribution of Differences in Sample Proportions interactive offered on Distribution 
of Differences in Sample Proportions (1 of 5) includes an array of openly licensed licensed 
components—all public domain or CC-BY—under “Rights of Use” 

• The About Inference interactive offered on Estimate the Difference between Population Proportions (2 
of 3) includes an array of openly licensed licensed components—all public domain or CC-BY—under 
“Rights of Use” 

• The Drawing Conclusions interactive offered on Estimate the Difference between Population 
Proportions (3 of 3) includes an array of openly licensed licensed components—all public domain or 
CC-BY—under “Rights of Use” 

• The Hypothesis Test for a Difference in Two Population Proportions interactive offered on Hypothesis 
Test for Difference in Two Population Proportions includes an array of openly licensed licensed 
components—all public domain, CC-BY, or CC-BY-SA—under “Rights of Use” 
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DEDICATION 

Dedicated to Professor Joan Mosely with affection and gratitude for her commitment to innovative 
mathematics instruction, online adult learner success, and the Open Education mission at CUNY School of 
Professional Studies. 
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MODULE 1: TYPES OF STATISTICAL 
STUDIES AND PRODUCING DATA 
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WHY IT MATTERS: TYPES OF STATISTICAL 
STUDIES AND PRODUCING DATA 
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WHY IT MATTERS: TYPES OF STATISTICAL 
STUDIES AND PRODUCING DATA 

Why learn about the various types of statistical studies and 
how data is produced? 

We organized this course around the Big Picture of Statistics. As we learn new material, we will always look at 
how these new ideas relate to the Big Picture. In this way the Big Picture is a diagram that will help us organize 
and understand the material we will learn throughout the course. 

The Big Picture summarizes the steps in a statistical investigation. 
We begin a statistical investigation with a research question. The research question is frequently something 

we want to know about a population. The population can be people or other things, such as animals or 
objects. For example, we might want to know the answer to questions such as: 

• What percentage of U.S. adults supports the death penalty? (Population: U.S. adults) 
• Do cell phones affect bees? (Population: bees) 
• Do cars get better gas mileage with a new gasoline additive? (Population: cars) 

The population is the entire group that we want to know something about: 

In most cases, the population is a large group. Often, the population is so large that we cannot collect 
information from every individual in the population. So we select a sample from the population. Then we 
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collect data from this sample. This is the first step in the statistical investigation. We call this step producing 
data. 

Of course, we need a sample that represents the population well. This involves careful planning but also 
involves chance. For example, if our goal is to determine the percentage of U.S. adults who favor the death 
penalty, we do not want our sample to contain only Democrats or only Republicans. So we can give everyone 
the same opportunity to be in the sample, but we will let chance select the sample. 

At this step of the investigation we also carefully define what kind of information we plan to gather. Then 
we collect the data. 

Data is often a long list of information. To make sense of the data, we explore it and summarize it using 
graphs and different numerical measures, such as percentages or averages. We call this step exploratory data 
analysis. 
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Remember, our goal is to answer a question about a population based on a sample. Of course, samples 
will vary due to chance, and we will need to answer our question in spite of this variability. So we need to 
understand how sample results will vary and how sample results relate to the population as a whole when 
chance is involved. This is where probability comes in. 

Probability is the “machinery” behind the last step in the process called inference. We infer something 
about a population based on a sample. This inference is the conclusion we reach from our sample data that 
answers our original question about the population. 
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Example – The big picture of statistics 

At the end of April 2005, ABC News and the Washington Post conducted a poll to determine the 

percentage of U.S. adults who support the death penalty. 

Research question: What percentage of U.S. adults support the death penalty? 

Steps in the statistical investigation: 

1. Produce Data: Determine what to measure, then collect the data. 

The poll selected 1,082 U.S. adults at random. Each adult answered this question: “Do you 

favor or oppose the death penalty for a person convicted of murder?” 

2. Explore the Data: Analyze and summarize the data. 

In the sample, 65% favored the death penalty. 

3. Draw a Conclusion: Use the data, probability, and statistical inference to draw a conclusion 

about the population. 

Our goal is to determine the percentage of the U.S. adult population that supports the death 

penalty. We know that different samples will give different results. What are the chances 

that our sample reflects the opinions of the population within 3%? Probability describes the 
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likelihood that our sample is this accurate. So we can say with 95% confidence that between 

62% and 68% of the population favor the death penalty. 

Let’s Summarize 

A statistical investigation with a research question. Then the investigation proceeds with the following steps: 

• Produce Data: Determine what to measure, then collect the data. 
• Explore the Data: Analyze and summarize the data (also called exploratory data analysis). 
• Draw a Conclusion: Use the data, probability, and statistical inference to draw a conclusion about the 

population. 

Types of Statistical Studies and Producing Data 

In this first module, we focus on the produce data step in a statistical investigation. We discuss two types 
of statistical investigations: the observational study and the experiment. Each type of investigation involves a 
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different approach to collecting data. We will also see that our approach to collecting data determines what we 
can conclude from the data. 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 

  |  22

http://oli.cmu.edu/
https://creativecommons.org/licenses/by/4.0


INTRODUCTION TO TYPES OF STATISTICAL 
STUDIES 
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INTRODUCTION TO TYPES OF STATISTICAL 
STUDIES 

What you’ll learn to do: Describe various types of statistical 
studies and the types of conclusions that are appropriate. 

In statistical studies, the type of study design used 
and the details of the design are important in 
determining what kind of conclusions we may draw 
from the results. In particular, simply observing an 
association between two variables – say, smoking 
and cancer – does not guarantee that one variable 
causes the other. In this section, we will explore how 
the details of a study design play a crucial role in 
determining our ability to establish evidence of 
causation. 
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TYPES OF STATISTICAL STUDIES (1 OF 4) 

Learning OUTCOMES 

• From a research question, determine the goal of a statistical study. 

Before we begin our discussion of the types of statistical studies, we look closely at the types of research 
questions used in statistical studies. 

Research Questions about a Population 

Recall that a population is the entire group of individuals or objects that we want to study. Usually, it is not 
possible to study the whole population, so we collect data from a part of the population, called a sample. We 
use the sample to draw conclusions about the population. 

For example, suppose our research question is “What is the average amount of money spent on textbooks 
per semester by full-time students at Seattle Central?” We cannot interview every full-time student at Seattle 
Central because would take too much time and cost too much money. We therefore carefully select a sample of 
full-time students at Seattle Central to represent the population of all full-time students at that college. Then 
we collect data from the sample to estimate the average amount spent on textbooks. 

This example illustrates how the research question guides the investigation. A well-stated research question 
contains information about: 

• The population (full-time students at Seattle Central). 
• The information we will collect from each individual in the sample. We also call this the variable. The 

variable is what we plan to measure (amount of money spent on textbooks per semester). 
• A numerical characteristic about the population related to this variable (the average amount of money 

spent on textbooks per semester). 

Here are some common types of research questions about a population: 
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Type of Research Question Examples 

Make an estimate about the population (often an 
estimate about an average value or a proportion with a given 
characteristic) 

What is the average number of hours that community 
college students work each week? 

What proportion of all U.S. college students are enrolled 
at a community college? 

Test a claim about the population (often a claim about 
an average value or a proportion with a given characteristic) 

Is the average course load for a community college 
student greater than 12 units? 

Do the majority of community college students qualify 
for federal student loans? 

Compare two populations (often a comparison of 
population averages or proportions with a given 
characteristic) 

In community colleges, do female students have a higher 
GPA than male students? 

Are college athletes more likely than nonathletes to 
receive academic advising? 

Investigate a relationship between two variables in the 
population 

Is there a relationship between the number of hours high 
school students spend each week on Facebook and their 
GPA? 

Is academic counseling associated with quicker 
completion of a college degree? 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=38#h5p-1 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=38#h5p-2 

Research Questions about Cause and Effect 

A research question that focuses on a cause-and-effect relationship is common in disciplines that use 
experiments, such as medicine or psychology. These types of questions ask how one variable responds as 
another variable is manipulated. These types of questions involve two variables. Here are some examples: 

• Does cell phone usage increase the risk of developing a brain tumor? 
• Does drinking red wine lower the risk of a heart attack? 
• Does playing violent video games increase aggressive behavior? 
• Does sex education lower the incidence of teen pregnancy? 

To provide convincing evidence of a cause-and-effect relationship, the researcher designs an experiment. We 
discuss experiments in “Collecting Data – Conducting an Experiment.” 

Note: In the previous section, Research Questions about a Population, we included examples of questions 
about the relationship between two variables in a population. But in these types of questions, we used words 
like associated, correlated, linked to, and connected. These words do not imply a cause-and-effect relationship 
between the variables. We can investigate these types of questions without conducting an experiment – an 
observational study will do. We study observational studies in “Collecting Data – Sampling.” 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=38#h5p-3 
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TYPES OF STATISTICAL STUDIES (2 OF 4) 

Learning OUTCOMES 

• Determine if a study is an experiment or an observational study. 

• From a description of a statistical study, determine the goal of the study. 

In general, there are two types of statistical studies: observational studies and experiments. 
An observational study observes individuals and measures variables of interest. The main purpose of an 

observational study is to describe a group of individuals or to investigate an association between two variables. 
We can answer questions about a population with an observational study. We can also investigate a relationship 
between two variables. But in an observational study, researchers do not attempt to manipulate one variable 
to cause an effect in another variable. For this reason, an observational study does not provide convincing 
evidence of a cause-and-effect relationship. 

An experiment intentionally manipulates one variable in an attempt to cause an effect on another variable. 
The primary goal of an experiment is to provide evidence for a cause-and-effect relationship between two 
variables. But the experiment has to be well-designed to provide convincing evidence of a cause-and-effect 
relationship. We study experiment design in the section “Collecting Data – Conducting an Experiment.” 

For now, our goal is to distinguish between these two types of studies. We focus on the connection between 
the research question, the type of study, and the kinds of conclusions we can make. 
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Example 

Music and Learning 

Many students listen to music while studying. Does listening to music improve learning? Students 

in a statistics class decide to investigate this question. They write more specific research questions 

related to the topic of music and learning. Then they design the following three studies: 

Study 1 

Specific research questions: Do the majority of college students listen to music while they study? 

Do the majority of college students believe that listening to music improves their learning? 

To investigate these questions, the statistics students conduct a survey in their other classes. They 

ask these two questions: 

• Do you listen to music while you study? 

• Do you think listening to music improves your concentration and memory? 

This is an observational study designed to answer two questions about a population of college 

students. Each question contains a claim about the population of college students. We can use data 

from this study to see if these claims are true. But data from this study cannot provide evidence of 

a cause-and-effect relationship between listening to music while studying and improvements in 

learning. 
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Study 2 

Specific research question: When we compare students who study with music to students who 

study in a quiet environment, which group gives higher ratings for understanding what they 

studied? 

To investigate this question, the instructor divides the class into two groups: (1) those who listen to 

music when they study and (2) those who do not listen to music when they study. The students 

keep a journal for a week. Each time they study, they record the following information: 

• Length of study session (in minutes) 

• A rating of how well they understood what they studied, on a scale of 1–10: 1 = no 

understanding, 10 = excellent understanding. 

This investigation is also an observational study. It compares two populations: (1) college students 

who listen to music when studying and (2) college students who do not listen to music when 

studying. We can also view this as an observational study of one population (college students) that 

investigates the relationship between two variables: listening to music while studying and 

perceived understanding of material studied. From this study, we might learn something 

interesting about the connection between college students’ study habits and their perception of 

their learning. But since this is an observational study, data from this study cannot provide 

evidence of a cause-and-effect relationship between listening to music while studying and 

improvements in learning. 

Study 3 

Specific research question: Does listening to music improve students’ ability to quickly identify 

information? 

To investigate this question, the instructor uses word-search puzzles. She divides the class into two 

groups. Students on one side of the room do a word puzzle for 3 minutes while listening to music 

on an iPod. Students on the other side of the room do a word puzzle for 3 minutes without music. 

The instructor calculates the average number of words found by each group. 

This study is an experiment. The instructor manipulates music to investigate the impact on puzzle 

completion. Data from this study can provide evidence of a cause-and-effect relationship between 

listening to music while studying and improvements in learning. But the improvement in learning is 

more narrowly defined as the ability to quickly identify information, such as words in a puzzle. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=40#h5p-4 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=40#h5p-5 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 
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TYPES OF STATISTICAL STUDIES (3 OF 4) 

Learning OUTCOMES 

• Based on the study design, determine what types of conclusions are appropriate. 

We now focus more closely on studies that investigate a relationship between two variables. In these types 
of studies, one variable is the explanatory variable, and the other is the response variable. To establish a 
cause-and-effect relationship, we want to make sure the explanatory variable is the only thing that impacts the 
response variable. We therefore get rid of all other factors that might affect the response. Then we manipulate 
the explanatory variable. Our goal is to see if it really does affect the response. 

In an observational study, researchers may take steps to reduce the influence of these other factors on the 
response. But it is difficult in an observational study to get rid of all the factors that may have an influence. In 
addition, the researchers do not manipulate the explanatory variable to see if it affects the response. They just 
collect data and look for an association between the two variables. For these reasons, observational studies do 
not give convincing evidence of a cause-and-effect relationship. 

In an experiment, researchers use a variety of techniques to eliminate the influence of these other factors. 
Then they manipulate the explanatory variable to see if it affects the response. For this reason, experiments give 
the strongest evidence for a cause-and-effect relationship. 
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Example 

Hormone Replacement Therapy 

When women go through menopause, the production of hormones in their bodies changes. The 

hormonal changes can cause a variety of symptoms that may be reduced by hormone replacement 

therapy. In the 1980s, hormone replacement therapy was common in the United States. 

In the early 1990s, observational studies suggested that hormone replacement therapy had 

additional benefits, including a reduction in the risk of heart disease. In these observational studies, 

researchers compared women who took hormones to those who did not take hormones. Health 

records showed that women taking hormones after menopause had a lower incidence of heart 

disease. But women who take hormones are different from other women. They tend to be richer 

and more educated, to have better nutrition, and to visit the doctor more frequently. These women 

have many habits and advantages that contribute to good health, so it is not surprising that they 

have fewer heart attacks. But can we conclude from these studies that the hormones caused the 

reduction in heart attacks? No. The results are confounded by the influence of these other factors. 

In 2002, the Women’s Health Initiative sponsored a large-scale, well-designed experiment to study 

the health implications of hormone replacement therapy. In this experiment, researchers randomly 

assigned over 16,000 women to one of two treatments. One group took hormones. The other 

group took a placebo. A placebo is a pill with no active ingredients that looks like the hormone pill. 
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The experiment was double-blind. Blind means that women did not know if they were receiving 

hormones or the placebo. Double-blind means that the information was coded, so researchers 

administering the pills did not know which treatment the women received. After 5 years, the group 

taking hormones had a higher incidence of heart disease and breast cancer. This is exactly the 

opposite result from the result found in the observational studies! In fact, the differences were so 

significant that the researchers ended the experiment early. The National Institutes of Health 

declared that the observational studies were wrong. Hormone replacement therapy to treat 

menopausal symptoms is now rarely used. 

What’s the Main Point? 

An observational study can provide evidence of a link or an association between two variables. But other 
factors may also influence the results. These other factors are called confounding variables. The influence of 
confounding variables on the response variable is one of the reasons that an observational study gives weak, 
and potentially misleading, evidence of a cause-and-effect relationship. A well-designed experiment takes steps 
to eliminate the effects of confounding variables, including random assignment of people to treatment groups, 
use of a placebo, or blind conditions. Using these precautions, a well-designed experiment provides convincing 
evidence of cause-and-effect. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=42#h5p-6 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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TYPES OF STATISTICAL STUDIES (4 OF 4) 

Learning OUTCOMES 

• Based on the study design, determine what types of conclusions are appropriate. 

Example 

Multitasking 

Do you constantly text-message while in class? Do you jump from one website to another while 

doing homework? If so, then you are a high-tech multitasker. In a study of high-tech multitasking 

at Stanford University, researchers put 100 students into two groups: those who regularly do a lot 

of media multitasking and those who don’t. The two groups performed a series of three tasks: 

(1) A task to measure the ability to pay attention: 
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Students view two images of red and blue rectangles flashed one after the other on a 

computer screen. They try to tell if the red rectangles are in a different position in the second 

frame. 

(2) A task to measure control of memory: 

Students view a sequence of letters flashed onto a computer screen, then recall which letters 

occurred more than once. 

(3) A task to measure the ability to switch from one job to another: 

Students view numbers and letters together with the instructions to pay attention to the 

numbers, then recall if the numbers were even or odd. Then the instructions switch. 

Students are to pay attention to the letters and recall if the letters were vowels or 

consonants. 

On every task, the multitaskers did worse than the non-multitaskers. 

The researchers concluded that “people who are regularly bombarded with several streams of 

electronic information do not pay attention, control their memory, or switch from one job to 

another as well as those who prefer to complete one task at a time” (as reported in Stanford News 

in 2009). 

“When they’re [high-tech multitaskers] in situations where there are multiple sources of 

information coming from the external world or emerging out of memory, they’re not able to filter 

out what’s not relevant to their current goal,” said Wagner, an associate professor of psychology at 

Stanford. “That failure to filter means they’re slowed down by that irrelevant information.” 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=45#h5p-8 

  |  42

http://news.stanford.edu/
https://pressbooks.cuny.edu/conceptsinstatistics/?p=45#h5p-8


In general, we should not make cause-and-effect statements from observational studies, but in reality, 
researchers do it all the time. This does not mean that researchers are drawing incorrect conclusions from 
observational studies. Instead, they have developed techniques that go a long way toward decreasing the impact 
of confounding variables. These techniques are beyond the scope of this course, but we briefly discuss a 
simplified example to illustrate the idea. 

Example 

Smoking and Cancer 

Consider this excerpt from the National Cancer Institute website: 

Smoking is a leading cause of cancer and of death from cancer. Millions of Americans have 

health problems caused by smoking. Cigarette smoking and exposure to tobacco smoke 

cause an estimated average of 438,000 premature deaths each year in the United States. 

Notice that the National Cancer Institute clearly states a cause-and-effect relationship between 

smoking and cancer. Now let’s think about the evidence that is required to establish this causal link. 

Researchers would need to conduct experiments similar to the hormone replacement therapy 

experiments done by the Women’s Health Initiative. Such experiments would be very difficult to do. 

The researchers cannot manipulate the smoking variable. Doing so would require them to randomly 

assign people to smoke or to abstain from smoking their whole life. Obviously, this is impossible. So 

how can we say that smoking causes cancer? 
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In practice, researchers approach this challenge in a variety of ways. They may use advanced 

techniques for making statistical adjustments within an observational study to control the effects 

of confounding variables that could influence the results. A simple example is the cell phone and 

brain cancer study. 

In this observational study, researchers identified a group of 469 people with brain cancer. 

They paired each person who had brain cancer with a person of the same sex, of similar age, 

and of the same race who did not have brain cancer. Then they compared the cell phone use 

for each pair of people. This matching attempts to control the confounding effects of sex, 

age, and race on the response variable, cancer. With these adjustments, the study will 

provide stronger evidence for (or against) a casual link. 

However, even with such adjustments, we should be cautious about using evidence from an 

observational study to establish a cause-and-effect relationship. Researchers used these types of 

adjustments in the observational studies with hormone replacement therapy. We saw in that 

research that the results were still misleading when compared to those of an experiment. 

So how can the National Cancer Institute state as a fact that smoking causes cancer? 

They used other nonstatistical guidelines to build evidence for a cause-and-effect relationship from 

observational studies. In this approach, researchers review a large number of observational studies 

with criteria that, if met, provide stronger evidence of a possible cause-and-effect relationship. 

Here are some simplified examples of the criteria they use: 

(1) There is a reasonable explanation for how one variable might cause the other. 

• For example, experiments with rats show that chemicals found in cigarettes cause cancer in 

rats. It is therefor reasonable to infer that these same chemicals may cause cancer in humans. 

• Consider these experiments together with the observational studies showing the association 

between smoking and cancer in humans. We now have more convincing evidence of a 

possible cause-and-effect relationship between smoking and cancer in humans. 

(2) The observational studies vary in design so that factors that confound one study are not 

present in another. 

• For example, one observational study shows an association between smoking and lung 

cancer, but the people in the study all live in a large city. Air pollution in a large city may 

contribute to the lung cancer, so we cannot be sure that smoking is the cause of cancer in 

this study. 

• Another observational study looks only at nonsmokers. This study shows no difference in 
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lung cancer rates for nonsmokers living in rural areas compared to nonsmokers living in cities. 

• Consider these two studies together. The second study suggests that air pollution does not 

contribute to lung cancer, so we now have more convincing evidence that smoking (not air 

pollution) is the cause of higher cancer rates in the first study. 

Let’s Summarize 

• There are four steps in a statistical investigation: 
◦ Ask a question that can be answered by collecting data. 
◦ Decide what to measure, and then collect data. 
◦ Summarize and analyze. 
◦ Draw a conclusion, and communicate the results. 

• There are two types of statistical research questions: 
◦ Questions about a population 
◦ Questions about cause-and-effect 

• To answer a question about a population, we select a sample and conduct an observational study. To 
answer a question about cause-and-effect we conduct an experiment. 

• There are two types of statistical studies: 
◦ Observational studies: An observational study observes individuals and measures variables of 

interest. We conduct observational studies to investigate questions about a population or about an 
association between two variables. An observational study alone does not provide convincing 
evidence of a cause-and-effect relationship. 

◦ Experiments: An experiment intentionally manipulates one variable in an attempt to cause an effect 
on another variable. The primary goal of an experiment is to provide evidence for a cause-and-effect 
relationship between two variables. 

• In statistics, a variable is information we gather about individuals or objects. 

• When we investigate a relationship between two variables, we identify an explanatory variable and a 
response variable. To establish a cause-and-effect relationship, we want to make sure the explanatory 
variable is the only thing that impacts the response variable. Other factors, however, may also influence 
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the response. These other factors are called confounding variables. 
• The influence of confounding variables on the response variable is one of the reasons that an 

observational study gives weak, and potentially misleading, evidence of a cause-and-effect relationship. A 
well-designed experiment takes steps to eliminate the effects of confounding variables, such as random 
assignment of people to treatment groups, use of a placebo, and blind conditions. For this reason, a well-
designed experiment provides convincing evidence of cause-and-effect. 
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INTRODUCTION TO SAMPLING 

What you’ll learn to do: For an observational study, critique 
the sampling plan. Recognize implications and limitations 
of the plan. 

Statistics seeks to use information about variables 
or relationships from a statistical study (sample) to 
draw conclusions about what is true for the entire 
population from which the sample was chosen. For 
this process to work reliably, it is essential that the 
sample be truly representative of the larger 
population. In this section, we will look at how we 
can create a sampling plan so that the sampling is 
carried out in such a way that the sample really does represent the population of interest. 
CC licensed content, Shared previously 
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SAMPLING (1 OF 2) 

Learning outcomes 

• For an observational study, critique the sampling plan. Recognize implications and limitations 

of the plan. 

We now focus on observational studies and how to collect reliable and accurate data for an observational study. 
We know that an observational study can answer questions about a population. But populations are 

generally large groups, so we cannot gather data from every individual in the population. Instead, we select 
a sample and gather data from the sample. We use the data from the sample to make statements about the 
population. 

Here are two examples: 

• A political scientist wants to know what percentage of college students consider themselves 
conservatives. The population is college students. It would be too time consuming and expensive to poll 
every college student, so the political scientist selects a sample of college students. Of course, the sample 
must be carefully selected to represent the political perspectives that are present in the population. 

• A government agency plans to test airbags from Honda to determine if the airbags work properly. 
Testing an airbag means it has to be inflated and punctured, which ruins the airbag, so the researchers 
certainly cannot test every airbag. Instead, they test a sample of airbags and draw a conclusion about the 
quality of airbags from Honda. 

Important Point 

Our goal is to use a sample to make valid conclusions about a population. Therefore, the sample must 
be representative of the population. A representative sample is a subset of the population that reflects the 
characteristics of the population. 

A sampling plan describes exactly how we will choose the sample. A sampling plan is biased if it 
systematically favors certain outcomes. 
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In our discussion of sampling plans, we focus on surveys. The next example is a famous one that illustrates 
how biased sampling in a survey leads to misleading conclusions about the population. 

Example 

The 1936 Presidential Election 

In 1936, Democrat Franklin Roosevelt and Republican Alf Landon were running for president. 

Before the election, the magazine Literary Digest sent a survey to 10 million Americans to 

determine how they would vote. More than 2 million people responded to the poll; 60% supported 

Landon. The magazine published the findings and predicted that Landon would win the election. 

However, Roosevelt defeated Landon in one of the largest landslide presidential elections ever. 

What happened? 

The magazine used a biased sampling plan. They selected the sample using magazine subscriptions, 

lists of registered car owners, and telephone directories. The sample was not representative of the 

American public. In the 1930s, Democrats were much less likely to own a car or have a telephone. 

The sample therefore systematically underrepresented Democrats. The poll results did not 

represent the way people in the general population voted. 

Before we discuss a method for avoiding bias, let’s look at some examples of common survey plans that 
produce unreliable and potentially biased results. 
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Example 

How to Sample Badly 

Online polls: The American Family Association (AFA) is a conservative Christian group that 

opposes same-sex marriage. In 2004, the AFA began a campaign in support of a constitutional 

amendment to define marriage as strictly between a man and a woman. The group posted a poll 

on its website asking AFA members to voice their opinion about same-sex marriage. The AFA 

planned to forward the results to Congress as evidence of America’s opposition to same-sex 

marriage. Almost 850,000 people responded to the poll. In the poll, 60% favored legalizing same-

sex marriage. 

What happened? Against the wishes of the AFA, the link to the poll appeared in blogs, social-

networking sites, and a variety of email lists connected to gay/lesbian/bisexual groups. The AFA 

claimed that gay rights groups had skewed its poll. Of course, the results of the poll would have 

been skewed in the other direction had only AFA members been allowed to participate. 

This is an example of a voluntary response sample. The people in a voluntary response sample 

are self-selected, not chosen. For this reason, a voluntary response sample is biased because only 

people with strong opinions make the effort to participate. 

Mall surveys: Have you ever noticed someone surveying people at a mall? People shopping at a 

mall are more likely to be teenagers, retired people, or people who have more money than the 

typical American. In addition, unless interviewers are carefully trained, they tend to interview 

people with whom they are comfortable talking. For these reasons, mall surveys frequently 

overrepresent the opinions of white middle-class or retired people. Mall surveys are an example of 

a convenience sample. 

Example 

How to Eliminate Bias in Sampling 

In a voluntary response sample, people choose whether to respond. In a convenience sample, the 

interviewer chooses who will be part of the sample. In both cases, personal choice produces a 
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biased sample. Random sampling is the best way to eliminate bias. Collecting a random sample is 

like pulling names from a hat (assuming every individual in the population has a name in the hat!). 

In a simple random sample everyone in the population has an equal chance of being chosen. 

Reputable polling firms use techniques that are more complicated than pulling names out of a hat. 

But the goal is the same: eliminate bias by using random chance to decide who is in the sample. 

Random samples will eliminate bias, even bias that may be hidden or unknown. The next three activities 
will reveal a bias that most of us have but don’t know that we have! We will see how random sampling avoids 
this bias. 

Random Samples 

Instructions: Use the simulation below for this activity. You will see 60 circles. This is the “population.” Our 
goal is to estimate the average diameter of these 60 circles by choosing a sample. 

1. Choose a sample of five circles that look representative of the population of all 60 circles. Mark your five 
circles by clicking on each of them. They will turn orange. Record the average diameter for the five 
circles. (Make sure you have five orange circles before you record the average diameter.) 

2. Reset the simulation. 
3. Choose another five circles and record the average diameter for this sample of circles. You can reuse a 

circle, but the sample should not have all the same circles. You now have the averages for two samples. 
4. Reset and repeat for a total of 10 samples. Record the average diameter for each sample. 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=49 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=49#h5p-10 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=49#h5p-11 

Now we estimate the average diameter of the 60 circles using random samples. 
Instructions: Use the simulation below for this activity. You will again see the same 60 circles. As before, 

this is the “population.” Our goal is to estimate the average diameter of these 25 circles by choosing a random 
sample. 

1. Click on the “Generate sample” button to get a random sample of five circles by clicking on the random 
sample button. The simulation randomly chooses five circles. Record the average diameter for the 
random sample. 

2. Reset the simulation using the reset button. 
3. Click on the “Generate sample” button to get another random sample. Record the average diameter for 

this random sample. You now have the averages for two samples. 
4. Reset and repeat for a total of 10 samples. Record the average diameter for each sample. 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=49 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=49#h5p-12 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=49#h5p-13 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=49#h5p-14 

Comment 

Random selection also guarantees that the sample results do not change haphazardly from sample to sample. 
When we use random selection, the variability we see in sample results is due to chance. The results obey the 
mathematical laws of probability. We looked at this idea briefly in the Big Picture of Statistics. Probability is 
the machinery for drawing conclusions about a population on the basis of samples. To use this machinery, the 
sample must be chosen by random chance. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=49#h5p-15 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=49#h5p-16 
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SAMPLING (2 OF 2) 

Learning outcomes 

• For an observational study, critique the sampling plan. Recognize implications and limitations 

of the plan. 

Let’s briefly summarize the main points about sampling: 

• We draw a conclusion about the population on the basis of the sample. 
• To draw a valid conclusion, the sample must be representative of the population. A representative 

sample is a subset of the population that reflects the characteristics of the population. 
• A sample is biased if it systematically favors a certain outcome. 
• Random selection eliminates bias. 

We have not mentioned the size of the sample. Are larger samples more accurate? Well, the answer is yes and 
no. 

Recall the 1936 presidential election. A sample of over 2 million people did not correctly identify the winner 
of the election. Two million people is a huge sample, yet the results were completely wrong. So a large sample 
does not guarantee reliable results. 

However, if the samples are randomly selected, then size does matter. We see this in the next example. 

Example 

For Random Samples, Size Matters 

Let’s compare the accuracy of random samples of different sizes. 
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Suppose there are 10,000 students at your college. Also suppose that 65% of these students are 

eligible for financial aid. How accurate are random samples at predicting this population value? 

To answer this question, we randomly select 50 students and determine the proportion who are 

eligible for financial aid. We repeat this several times. Here are the results for three random 

samples: 

Notice that each random sample has a different result. Some results are larger than the true 

population value of 65%; some results are smaller than the true population value. Because there is 

no bias in random samples, we expect results above and below the true value to occur with similar 

frequency. 

Now we use a simulation to take many more random samples. Again, each sample is composed of 

50 randomly selected people. Here is a dotplot of the proportion who are eligible for financial aid in 

100 samples. Each dot is a random sample. 

We see that the results from random samples vary from 0.48 to 0.80. Typical values range from 

about 0.58 to 0.74. 

Note: Many samples have results below the true population value of 0.65, and many have results 
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above 0.65. This shows that random samples are not biased. For the question Are you eligible for 

financial aid?, there is no systematic favoring of one response over another. The samples are 

representative of the population. 

What happens when we increase the number of people in the random sample? 

We increased the number of people in each sample to 250. Here is dotplot of the results from 100 

of these larger random samples. 

Notice there is less variability in these larger samples. Results range from about 0.58 to 0.73. Typical 

values range from about 0.62 to 0.68. These samples give results that are closer to the true 

population value of 0.65. 

So what’s the point? Larger samples tend to be more accurate than smaller samples if the samples 

are chosen randomly. 

Comment 

The precision of the sample results depends on the size of the sample, not the size of the population. The 
following dotplots illustrate this point. Here we selected samples with 250 people in each sample, but we varied 
the size of the population. Each dotplot contains 100 samples. 

Notice that the sample results look very similar. For each population, the sample results fall between about 
0.58 and 0.73. In each graph, it is common for sample results to fall between about 0.62 and 0.68. 
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What’s the main point? The size of the population does not affect the accuracy of a random sample as long as 
the population is large. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=54#h5p-17 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=54#h5p-18 

Comment 

If an attempt is made to include every individual from a population in a sample, then the investigation is 
called a census. Every 10 years, the U.S. Census Bureau conducts a population census. It attempts to collect 
information about every person living in the United States. However, the population census misses between 
1% and 3% of the U.S. population and accidentally counts some people more than once. A full census is 
possible only for small populations. 

Let’s Summarize 

• We draw a conclusion about the population on the basis of the sample. 
• To draw a valid conclusion, the sample must be representative of the population. A representative 

sample is a subset of the population. It also reflects the characteristics of the population. 
• A sample is biased if it systematically favors a certain outcome. 
• Random selection eliminates bias. 
• Larger samples tend to be more accurate than smaller samples if the samples are chosen randomly. 
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• The size of the population does not affect the accuracy of a random sample as long as the population is 
large. 

• If an attempt is made to include every individual from a population in a sample, then the investigation is 
called a census. 
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INTRODUCTION TO CONDUCTING 
EXPERIMENTS 

What you’ll learn to do: Identify features of experiment 
design that control the effects of confounding. 

In experiments, instead of assessing the values of the variables as they naturally occur, the researchers interfere 
and they are the ones who assign the values of the explanatory variable to the individuals. The researchers 
“take control” of the values of the explanatory variable because they want to see how changes in the value of 
the explanatory variable affect the response variable. (Note: By nature, any experiment involves at least two 
variables.) 

The type of experiment design used, and the details of the design, are crucial, since they will determine what 
kind of conclusions we may draw from the results. This is especially important when we are trying to establish 
a cause-and-effect relationship between two variables. 
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CONDUCTING EXPERIMENTS (1 OF 2) 

Learning OUTCOMES 

• Identify features of experiment design that control the effects of confounding. 

We now focus on experiments. 
The primary goal of an experiment is to provide evidence for a cause-and-effect relationship between two 

variables. An experiment intentionally manipulates the explanatory variable in an attempt to cause an effect on 
the response variable. To establish a cause-and-effect relationship, we want to make sure that the explanatory 
variable is the only factor that impacts the response variable. We therefore attempt to get rid of all other factors 
that might affect the response. These other factors are called confounding variables. 

To confound means to mix up or to confuse. Confounding variables mix up our ability to determine if the 
explanatory variable causes a change in the response variable. If we do not control the effects of confounding 
variables, the experiment does not provide evidence of a cause-and-effect relationship between the explanatory 
and response variables. 

Researchers use two common strategies to control the effects of confounding variables: 

• Direct control 
• Random assignment 

Example 

Direct Control 

Researchers compare bacteria reduction for three different hand-drying methods. In this 

experiment, participants handled uncooked chicken for 45 seconds, then washed their hands with 

one squirt of soap for 60 seconds, and then used one of three hand-drying methods. After 
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participants completely dried their hands, researchers measured the bacteria count on their hands. 

The Infectious Disease News published the results in 2010. 

In this experiment, the explanatory variable is hand-drying method.The response variable is 

bacteria count. Notice that the explanatory variable determines the three treatments in the 

experiment. Each treatment is a different hand-drying method. For this reason, the explanatory 

variable is also called the treatment variable. 

In this experiment, researchers attempt to directly control the influence of three variables that could 

affect the bacteria count: 

(1) Length of time participants handle the raw chicken. 

• Direct control: All participants handle the raw chicken for 45 seconds. 

(2) Amount of soap participants use. 

• Direct control: All participants use one squirt of soap. 

(3) Amount of time participants wash hands. 

• Direct control: All participants wash their hands for 60 seconds. 

Notice that the control works by stabilizing the impact of the confounding variable across the 

treatments. For example, the amount of soap will still influence the bacteria count. We cannot 

avoid this. But if all participants use the same amount of soap, then differences in bacteria count 

among the three treatments cannot be due to the amount of soap used. 

Similarly, the amount of time that participants wash their hands will influence the bacteria count. 

But if all participants wash their hands for the same amount of time, then differences in bacteria 

count among the three treatments cannot be due to the amount of time participants washed their 

hands. This is what we mean when we say that the control works by stabilizing the impact of the 

confounding variable across the treatments. 

Now we examine random assignment. Random assignment controls the effects of confounding variables 
that a researcher cannot control directly or that are difficult to identify in advance. 
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Example 

Random Assignment 

Medical researchers conducted an experiment to compare two different types of surgery for 

children with hernias. They compared the recovery times for each type of surgery. The two surgery 

types are laparoscopic repair (a surgery that involves three small incisions) and open repair (a 

surgery that involves one large incision). Researchers identified a variety of variables that might 

influence recovery time, such as child’s age, weight, and physical fitness level. 

Let’s consider one of these variables: age. How could the researchers control the impact of age on 

recovery time? 

Direct control involves use of children of the same age. For example, researchers might use only 

10-year-old children in the experiment. But it may be difficult to find enough 10-year-old children 

with hernias. So how do researchers create treatment groups that are similar with respect to age? 

One way is to assign children at random to treatment groups. 

The goal of random assignment is to create similar groups with respect to age, weight, and other 

characteristics that might influence recovery time. To illustrate how random assignment creates 

similar groups, we focus on age. Here is a dotplot of the ages of the 48 children with hernias who 

participated in this experiment. Each dot represents a child. The average age of the 48 children is 

8.29 years. 

If random assignment is working, the average age for each treatment group should be about equal. 

We see how random assignment works in the next activity. 

Click Random Assignment to randomly assign the 48 children to the two treatments. Repeat this process 
several times to investigate whether random assignment creates groups with similar ages. The average age is 
labeled as the mean and marked with a vertical line. Compare the average ages for the treatment groups. 
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Click here to open this simulation in its own window. 
 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=57 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=57#h5p-19 

What Is the Main Point? 

The goal of random assignment is to create similar treatment groups. If the groups are similar, then any 
differences we see in the response variable are due to the differences in treatments. In this way, random 
assignment controls the impact of confounding variables. Random assignment in an experiment eliminates 
confounding, just as random selection in a survey eliminates bias. 

Comment 

How do we make random assignments? We use any method that allows random chance to choose the 
treatment for each participant. Random assignment means that each participant has an equal chance of 
receiving any one of the treatment options. For example, in the hernia experiment, you could put every child’s 
name in a hat. The first 24 names drawn get the first treatment. The rest of the children get the second 
treatment. You could also flip a coin. Heads means the child is assigned to the first treatment. This method 
could create groups with slightly different sizes, which is fine. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=57#h5p-20 

Try It 

The following paragraph is from a 1999 USA Today article titled “Heart care reflects race and sex, 

not symptoms.” 

“Previous research suggested that blacks and women were less likely than whites and men to get 

cardiac catheterization or coronary bypass surgery for chest pain or a heart attack. Scientists 

blamed differences in illness severity, insurance coverage, patient preference, and health care 

access. The researchers eliminated those differences by videotaping actors – two black men, two 

white men, two black women, two white women – describing chest pain from identical scripts. 

They wore identical gowns, used identical hand gestures, and were taped from the same position. 

Researchers asked 720 primary care doctors at meetings of the American College of Physicians or 

the American Academy of Family Physicians to watch a tape and recommend care. The doctors 

thought the study focused on clinical decision making.” 

Researchers rolled a four-sided die to determine which video each doctor watched. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=57#h5p-21 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=57#h5p-22 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=57#h5p-23 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=57#h5p-24 
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CONDUCTING EXPERIMENTS (2 OF 2) 

Learning OUTCOMES 

• Avoid overgeneralization of experiment results. 

Let’s summarize what we know about experiments: 

• The goal of the experiment is to provide evidence for a cause-and-effect relationship between two 
variables. 

• A well-designed experiment controls the effects of confounding variables to isolate the effect of the 
explanatory variable on the response. 

• Two commonly used methods for controlling the effects of confounding variables are direct control and 
random assignment. 

• Random assignment uses random chance to assign participants to treatments. This creates similar 
treatment groups. With random assignment, we can be fairly confident that any differences we observe 
in the response of treatment groups is due to the explanatory variable. In this way, we have evidence for a 
cause-and-effect relationship. 

Now we discuss a few more strategies that are commonly used to control the effects of confounding 
variables. 

In an experiment, we manipulate the explanatory variable to determine if it has an effect on the response 
variable. Could the change we observe in the response variable happen without manipulating the explanatory 
variable? Maybe what we observe would have happened anyway. 

For this reason, it is important to include a control group. A control group is a group that receives no 
treatment. The control group provides a baseline for comparison. 
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Example 

Control Groups 

Music and rats: In David Merrell’s experiment with rats, he wanted to examine the relationship 

between music and the ability of rats to run a maze. He had three treatment groups: exposure to 

music by the heavy metal band Anthrax, exposure to music by Mozart, and no exposure to music. 

The group of rats that did not listen to music is the control group. Merrell’s experiment lasted 1 

month. With a month of practice, the rats in all the groups would probably get faster at running the 

maze. The control group provides a baseline for comparison. At the end of 1 month, the rats in the 

Mozart group were much faster at running the maze than were the rats in the other two groups. 

Comparison to the control group shows that the improvement in the Mozart group is not due to 

the rats being more experienced with the maze. 

Hernia treatments for children: In this experiment, researchers compared two different 

surgeries. The response variable was recovery time, so it would not have made sense to have a no-

treatment group. However, one type of surgery was the standard treatment for hernias, and 

children who received this surgery represented the control group. This group provides a baseline 

for comparing recovery times. 

In experiments that use human participants, use of a control group may not be enough to establish whether 
a treatment really has an effect. A substantial amount of research shows that people respond in positive ways to 
treatments that have no active ingredients, a response called the placebo effect. A placebo is a treatment with 
no active ingredients, sometimes called a “sugar pill.” 

Example 

The Placebo Effect 

An article published in the Washington Post in 2002 illustrates the placebo effect in medical 

experiments. 

After thousands of studies, hundreds of millions of prescriptions and tens of billions of dollars 
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in sales, two things are certain about pills that treat depression: Antidepressants like Prozac, 

Paxil and Zoloft work. And so do sugar pills. A new analysis has found that in the majority of 

trials conducted by drug companies in recent decades, sugar pills have done as well as – or 

better than – antidepressants….The new research may shed light on findings such as those 

from a trial last month that compared the herbal remedy St. John’s wort against Zoloft. St. 

John’s wort fully cured 24 percent of the depressed people who received it, and Zoloft cured 

25 percent – but the placebo fully cured 32 percent. 

The placebo effect can confound the results of medical experiments. It is uncertain what is behind 

the placebo effect, but because people in medical experiments improve when taking a placebo, a 

placebo group provides a baseline for comparing treatments. We cannot eliminate the placebo 

effect on a treatment group. Both the placebo group and the drug group experience the placebo 

effect. If a treatment produces better results than a placebo, then we have evidence that the 

treatment (and not the placebo effect) is responsible for the improvement. 

In experiments that use a placebo, participants do not know whether they are receiving the drug or a placebo. 
The participants are blind to the treatment to prevent their own beliefs about the drug (or placebo) from 
confounding the results. 

Example 

Blinding 

Recall our discussion of the experiment conducted by the Women’s Health Initiative to study the 

health implications of hormone replacement therapy. In this experiment, researchers randomly 

assigned over 16,000 women to one of two treatments. One group took hormones. The other 

group took a placebo. The experiment was also double-blind, meaning that neither the women nor 

the researchers knew who had which treatment. 

In a single-blind, experiment only one of the two (either the researcher or the participants) do not 

know which treatment the participants receive. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=58#h5p-25 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=58#h5p-26 

To end our discussion of experiments, we consider one last question: If an experiment is well-designed, can 
we generalize the results? 

Recall the hormone replacement experiment. This experiment has all of the features of a well-designed 
experiment: 

• A large number of participants (over 16,000 women) 
• Use of a placebo group 
• Random assignment of women to hormone treatment or placebo 
• Double-blind design 

After 5 years, the group taking hormones had a higher incidence of breast cancer and heart disease. 
Researchers were so alarmed by the results that the experiment was ended early to prevent further harm to the 
health of the women participating in the hormone group. 

As a result of this experiment, the use of hormone replacement therapy fell by 66%. 
Yet the British Menopause Society and the International Menopause Society questioned this reaction. The 

Women’s Health Concern, a British nonprofit group that provides independent and unbiased information 
about women’s health, wrote: 

It must be remembered that the WHI data on which the concerns were raised related to overweight North 
American women in their mid-sixties and not to the women that are treated with HRT for their 
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menopausal symptoms in the United Kingdom, who are usually around the age of menopause, namely 
45–55 years. 

The concerns expressed here do not challenge the validity of the results of the WHI experiment. Instead, 
they question whether the results apply to a larger group of women: women who are younger and not 
overweight when they go through menopause. 

This is an important consideration. If our goal is to generalize the results of an experiment to a more general 
population, we must consider issues of sampling design as well as random assignment. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=58#h5p-27 

An Important Point about the Role of Random Chance 
We now know that in an experiment we intentionally manipulate the explanatory variable to observe 

changes in the response variable. We use the explanatory variable to create different treatments. If we see 
different responses in the different treatments, we want to be able to say that the differences are the result of the 
explanatory variable. We must rule out other possible explanations for the differences we observed, so we use 
direct control and random assignment, as well as a control group, a placebo group, or blinding as appropriate. 

But none of these strategies will rule out the influence of chance variation. When we randomly assign 
participants to treatments, we produce similar groups most of the time. But there is a small chance that we will 
end up with treatment groups that are not similar. 

For example, in the hernia experiment with children, we saw that random assignment creates two groups 
with average ages that are close. But there is a very small chance that we could get two groups that significantly 
differ in ages. This will not happen very often, but it could. And if it does happen, the results of our experiment 
are confounded by age. 

Similarly, when we investigated how well a random sample estimates the proportion of students receiving 
financial aid in the population, we saw that the proportions from random samples gave good estimates – most 
of the time. Occasionally, a random sample did not give a good estimate. Larger random samples varied less, 
but they still varied. 
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What’s the Main Point? 

Good study design is important. Random selection in sampling can control bias. Random assignment in 
experiments can control the effects of confounding variables. But there is always a small chance, even when we 
randomly sample, that the results we observe in a poll do not represent the population well. Similarly, there is 
always a small chance, even when we use random assignment, that the differences we observe in an experiment 
are due to random variation and not the explanatory variable. For this reason, we have to understand how 
random chance behaves. This is the role of probability. We study probability later in the course, before we learn 
more formal statistical methods for determining if what we observe could be a result explained by chance. 

Let’s Summarize 

• The goal of an experiment is to provide evidence for a cause-and-effect relationship between two 
variables. 

• A well-designed experiment controls the effects of confounding variables to isolate the effect of the 
explanatory variable on the response. 

• Two commonly used methods for controlling the effects of confounding variables are direct control and 
random assignment. 

• Random assignment uses random chance to assign participants to treatments, which creates similar 
treatment groups. With random assignment, we can be fairly confident that any differences we observe 
in the response of treatment groups is due to the explanatory variable. In this way, we have evidence for a 
cause-and-effect relationship. 

• Other strategies for controlling confounding variables include use of a control group, use of a placebo 
group, and blinding. 

• A well-designed experiment provides evidence for a cause-and-effect relationship. But even in a well-
designed experiment, differences in the response might be due to chance. We learn to describe chance 
behavior when we study probability later in the course. 
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PUTTING IT TOGETHER: TYPES OF 
STATISTICAL STUDIES AND PRODUCING 
DATA 

Let’s Summarize 

• There are four steps in a statistical investigation: 
◦ Ask a question that can be answered by collecting data. 
◦ Decide what to measure, and then collect data. 
◦ Summarize and analyze. 
◦ Draw a conclusion, and communicate the results. 

• There are two types of statistical studies: 
◦ Observational studies: An observational study observes individuals and measures variables of 

interest. We conduct observational studies to investigate questions about a population or about an 
association between two variables. An observational study alone does not provide convincing 
evidence of a cause-and-effect relationship. 

◦ Experiments: An experiment intentionally manipulates one variable in an attempt to cause an effect 
on another variable. The primary goal of an experiment is to provide evidence for a cause-and-effect 
relationship between two variables. 

• In statistics, a variable is information we gather about individuals or objects. 

Observational Studies 

• In an observational study, we draw a conclusion about the population on the basis of a sample. To draw 
a valid conclusion, the sample must be representative of the population. A representative sample is a 
subset of the population. It also reflects the characteristics of the population. 

• A sample is biased if it systematically favors a certain outcome. Voluntary response samples (such as 
Internet polls) and convenience samples (such as surveys at a mall) are biased. 

• Random selection eliminates bias. In a simple random sample, everyone in the population has an equal 
chance of being chosen. In this way, random selection helps ensure that the sample is representative of 
the population. 

• Larger samples tend to be more accurate than smaller samples if the samples are chosen randomly. The 
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size of the population does not affect the accuracy of a random sample as long as the population is large. 
• If an attempt is made to include every individual from a population in a sample, then the investigation is 

called a census. 

Experiments 

The goal of the experiment is to provide evidence for a cause-and-effect relationship between two variables. 
When we investigate a relationship between two variables, we identify an explanatory variable and a response 
variable. To establish a cause-and-effect relationship, we want to make sure the explanatory variable is the only 
factor that impacts the response variable. But other factors, called confounding variables, may also influence the 
response. 

• A well-designed experiment takes steps to eliminate the effects of confounding variables. These steps 
include direct control, random assignment of people to treatment groups, use of a control or placebo, 
and blind conditions. Incorporating such precautions, a well-designed experiment provides convincing 
evidence of cause-and-effect. 

• Random assignment uses random chance to assign participants to treatments, which creates similar 
treatment groups. With random assignment, we can be fairly confident that any differences we observe 
in the response of treatment groups is due to the explanatory variable. In this way, we have evidence for a 
cause-and-effect relationship. 

• A well-designed experiment provides evidence for a cause-and-effect relationship. But even in a well-
designed experiment, differences in the response might be due to chance. We learn to describe chance 
behavior when we study probability later in the course. 
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WHY IT MATTERS: SUMMARIZING DATA 
GRAPHICALLY AND NUMERICALLY 

Why understand how to summarize collected data both 
graphically and numerically? 

Before we begin Summarizing Data Graphically and Numerically, let’s see how the new ideas in this module 
relate to what we learned in the previous module, Types of Statistical Studies and Producing Data. 

Recall the Big Picture: 
We begin a statistical investigation with a research question. The investigation proceeds with the following 

steps: 

• Produce Data: Determine what to measure, then collect the data. ← Types of Statistical Studies and 
Producing Data 

• Explore the Data: Analyze and summarize the data (also called exploratory data analysis). ← 
Summarizing Data Graphically and Numerically 

• Draw a Conclusion: Use the data, probability, and statistical inference to draw a conclusion about the 
population. 

The previous module focused on methods for collecting reliable data. In this module, we focus on 
summarizing and analyzing data. In the Big Picture of Statistics, we call this exploratory data analysis. 
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INTRODUCTION TO CATEGORICAL VS. 
QUANTITATIVE DATA 

What you’ll learn to do: Distinguish between quantitative 
and categorical variables in context. 

In studying real world phenomena, we encounter 
many different types of data. Some data is a 
measurement: such as temperature, height, or 
volume. Other data may be a label: such as male or 
female, country name, or patient ID number. How 
we statistically analyze the data depends on the type 
of data we are collecting. Since quantitative data is 
numerical, there are clear numerical ways compute 
“averages”, “spread”, and shape of data when 
graphed. For qualitative data, we will look at counts 
and proportions to give a numerical way to measure these qualitative data which do not have a numeric 
meaning. 
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CATEGORICAL VS. QUANTITATIVE DATA 

Learning OUTCOMES 

• Distinguish between quantitative and categorical variables in context. 

Data consist of individuals and variables that give us information about those individuals. An individual can 
be an object or a person. A variable is an attribute, such as a measurement or a label. 

Example 

Medical Records 

This dataset is from a medical study. In this study, researchers wanted to identify variables 

connected to low birth weights. 
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Age at 
delivery 

Weight 
prior to 
pregnancy 
(pounds) 

Smoker 

Doctor 
visits 
during 
1st 
trimester 

Race 
Birth 
Weight 
(grams) 

Patient 
1 29 140 Yes 2 Caucasian 2977 

Patient 
2 32 132 No 4 Caucasian 3080 

Patient 
3 36 175 No 0 African-American 3600 

* * * * * * * 

* * * * * * * 

Patient 
189 30 95 Yes 2 Asian 3147 

In this example, the individuals are the patients (the mothers). There are six variables in this 

dataset: 

• Mother’s age at delivery (years) 

• Mother’s weight prior to pregnancy (pounds) 

• Whether mother smoked during pregnancy (yes, no) 

• Number of doctor visits during first trimester of pregnancy 

• Mother’s race (Caucasian, African American, Asian, etc.) 

• Baby’s birth weight (grams) 

There are two types of variables: quantitative and categorical. 

• Categorical variables take category or label values and place an individual into one of several groups. 
Each observation can be placed in only one category, and the categories are mutually exclusive. In our 
example of medical records, smoking is a categorical variable, with two groups, since each participant can 
be categorized only as either a nonsmoker or a smoker. Gender and race are the two other categorical 
variables in our medical records example. 

• Quantitative variables take numerical values and represent some kind of measurement. In our medical 
example, age is an example of a quantitative variable because it can take on multiple numerical values. It 
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also makes sense to think about it in numerical form; that is, a person can be 18 years old or 80 years old. 
Weight and height are also examples of quantitative variables. 

Try It 

We took a random sample from the 2000 US Census. Here is part of the dataset. 

Sample of 2000 US Census Data 

State Zipcode Family_Size Annual_Income 

Florida 32716 8 200 

Alabama 35236 5 800 

Florida 32116 6 13500 

Florida 33679 5 21000 

Alabama 36374 4 21000 

California 94565 1 23000 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=65#h5p-28 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=65#h5p-29 
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Try It 

Consumer Reports analyzed a dataset of 77 breakfast cereals. Here is a part of the dataset. 

(Note: Consumer Reports is an non-profit organization that rates products in an effort to help 

consumers make informed decisions.) 

Sample of Consumer Reports Breakfast Cereal Data 

Name Manufactuer Target Shelf Calories Sodium Fat 

100% Bran Nabisco adult top 70 130 1 

100% Natural Bran Quaker Oats adult top 120 15 5 

All-Bran Kelloggs adult top 70 260 1 

All-Bran Extra Fiber Kelloggs adult top 50 140 0 

Almond Delight Ralston Purnia adult top 110 200 2 

Apple Cinnamon Cheerios General Mills child bottom 110 180 2 

Apple Jacks Kelloggs child middle 110 125 0 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=65#h5p-30 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=65#h5p-31 
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INTRODUCTION TO DOTPLOTS 

What you’ll learn to do: Describe the distribution of 
quantitative data using a dotplot. 

When we conduct statistical experiments, we often work with large tables that present each individual’s 
information.  To analyze the data, we look to summarize information and patterns about the group as a whole, 
not just on the individual level.  A dotplot is a simple and powerful tool to display the distribution of the data: 
showing the center, spread, skew, and possible outliers.  In this next section, we shall see how to construct and 
interpret dotplots as well as build basic vocabulary to talk about the distribution (aka shape) of the data. 
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DOTPLOTS (1 OF 2) 

Learning OUTCOMES 

• Describe the distribution of quantitative data using a dot plot. 

Introduction 

When we work with data, the data is usually in a table. In this form, we can easily see the variable value for 
each individual. But when we analyze data, we are not focused on information about an individual. We want to 
describe a group of individuals. In data analysis, our goal is to describe patterns in the data and create a useful 
summary about a group. A table is not a useful way to view data because patterns are hard to see in a table. For 
this reason, our first step in data analysis is to create a graph of the distribution of the variable. 

In a graph that summarizes the distribution of a variable, we can see 

• the possible values of the variable. 
• the number of individuals with each variable value or interval of values. 

In this module, Summarizing Data Graphically and Numerically, we focus on summarizing the 
distribution of a quantitative variable. We discuss the distribution of a categorical variable in depth in the 
module Relationships in Categorical Data with Intro to Probability. 

Example 

Breakfast Cereals 

Here are two graphs of the variable protein for a group of breakfast cereals targeted at children. 

In both graphs, the individuals and the variable are the same: 
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• Individuals: Children’s cereals 

• Variable: Grams of protein in a serving of cereal 

Let’s compare the graphs to determine which graph is a better summary of the distribution of 

protein. 

This graph is called a case-value graph. You can see the names of the individual cereals (the 

cases) and the amount of protein in a serving of each cereal (the variable values). For example, 

Apple Jacks has 2 grams of protein in a serving. This graph is NOT a good way to summarize the 

distribution of protein values because we cannot easily determine the number of cereals with each 

protein amount. 

For example, how many cereals have 2 grams of protein in a serving? This graph does not make it 

easy to answer this question. We have to move across the graph and count the cereals with 2 

grams of protein. In this way, a case-value graph is like a table. We cannot easily see patterns in the 

data or determine the number of individuals with a given variable value. 

Here is a second graph of the same data. This graph is called a dotplot. A dotplot gives a better 

summary of the distribution of protein. 
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In a dotplot, each dot represents one individual. Here, each dot is a children’s cereal. The numbers 

on the horizontal axis are the variable values. The vertical axis gives the count of cereals. We can 

easily see that 10 children’s cereals have 2 grams of protein in a serving. 

From the dotplot, we can easily describe the distribution of protein. Here are some observations 

about this distribution: 

• The amount of protein in a serving varies from 1 to 6 grams. 

• Most of the cereals have 1 or 2 grams of protein in a serving. 

• Larger amounts of protein are less typical. 

• One cereal has 6 grams of protein. This much protein is unusual for this group of children’s 

cereals. 

These observations are a good summary of the data. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=70#h5p-32 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=70#h5p-33 
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DOTPLOTS (2 OF 2) 

Learning OUTCOMES 

• Describe the distribution of quantitative data using a dot plot. 

Now we will give more specific advice on how to describe the distribution of a quantitative variable. 
When we describe patterns in data, we use descriptions of shape, center, and spread. We also describe 

exceptions to the pattern. We call these exceptions outliers. 

Shape: To describe the shape of a distribution, imagine sketching the outline of the data to emphasize the 
general trend. 

101  |  



Example 

Some Common Descriptions of Shape Used to Categorize 
Distributions 

Right skewed: A cluster of data on the left with a tail of data tapering off to the right. A right-

skewed distribution has a lot of data at lower variable values with smaller amounts of data at 

higher variable values. 

• The distribution of sugar in adult cereals is skewed to the right. 

Left skewed: A cluster of data on the right with a tail of data tapering off to the left. A left skewed 

distribution has a lot of data at higher variable values with smaller amounts of data at lower 

variable values. 

• The distribution of sugar in children’s cereals is skewed to the left. 
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Symmetric with a central peak (also called bell-shaped): A central peak with a tail in both 

directions. A bell-shaped distribution has a lot of data in the center with smaller amounts of data 

tapering off in each direction. 

• The distribution of calories in children’s cereals is symmetric with a central peak. It is bell-

shaped. The distribution of calories in adult cereals is also roughly bell-shaped. 

Uniform: A rectangular shape, the same amount of data for each variable value. 

• Here is the last digit from 47 students’ telephone numbers. The distribution of the digits is 

roughly uniform. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=79#h5p-34 

Center and Spread 

To describe the pattern in a distribution of a quantitative variable, we describe more than the shape. We also 
describe the center and spread. Later in this module, we develop more precise ways to identify the center of a 
distribution and to measure the spread. For now, we discuss these concepts informally. 

When we describe a distribution of a quantitative variable, it is helpful to identify a typical value. We choose 
a single value of the variable to represent the entire group. This is one way to think about the center of the 
distribution. 

We also want to describe how much the data varies among individuals in the group. Variability is another 
word for spread. We describe the spread in two ways: 

• We look at the smallest value and the largest value to describe an overall range in the data. 

range = largest value – smallest value 

• We also describe a range of typical values to represent common variable values for the group. 
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Example 

Cereals 

Here we use shape, center, and spread to compare the distribution of sugar content in adult cereals 

and children’s cereals. 

Compare the shapes: 

The sugar content in adult cereals is skewed to the right. Many adult cereals have less than 8 

grams of sugar in a serving. A smaller number of adult cereals contain high amounts of sugar. The 

sugar content for children’s cereals is skewed to the left. Many children’s cereals have more than 8 

grams of sugar in a serving, with a smaller number of children’s cereals with low amounts of sugar. 

Comment: There is nothing special about the number 8. We chose 8 as a convenient reference 

point to describe the opposite trends in these two distributions. 

Compare the centers: 

A typical adult cereal has 3 grams of sugar in a serving. A typical children’s cereal has 12 grams of 

sugar in a serving. 

Comment: Here we looked at the most common value in each distribution. We develop more 

precise ways to describe the center of a distribution in the next section. For now, just choose a 

reasonable typical value to represent the group. 

Compare the spreads: 

Overall range: Adult cereals have 0 to 14 grams of sugar in a serving. Children’s cereals vary from 1 

to 15 grams. So both types of cereal vary over a range of 14 grams. 
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(Note: Overall range = highest value – lowest value. For adult cereals: 14 – 0 = 14. For children’s 

cereals: 15 – 1 = 14) 

Typical range: Typical adult cereals have between 0 and 6 grams of sugar in a serving, compared 

to 9 to 13 grams in typical children’s cereals. 

Comment: Here we looked at clumps in the data to identify a range of typical values. We develop 

more precise ways to describe the spread a distribution in the last two sections of this module. 

When comparing two distributions, we usually tie all of these ideas into one paragraph: 

In this sample, children’s cereals have more sugar per serving than adult cereals. A typical children’s 

cereal has 12 grams of sugar in a serving. It is not uncommon for children’s cereals to have 9 to 13 

grams of sugar per serving, but it is unusual for a children’s cereal to have less than 8 grams of 

sugar. A typical adult cereal has 3 grams of sugar in a serving. It is not uncommon for adult cereals 

to have 0 to 6 grams of sugar in a serving. Larger amounts of sugar are less common. 

Here is a paragraph that uses more formal vocabulary to summarize the comparison: 

In this sample, children’s cereals have more sugar per serving than adult cereals. The distribution of 

sugar in children’s cereals is skewed left with an overall range of 14 grams. Typical children’s cereals 

have 9 to 13 grams of sugar per serving with 12 grams as the most common amount. The 

distribution of sugar in adult cereals is skewed right with the same overall range of 14 grams. 

Typical adult cereals have 0 to 6 grams of sugar per serving with 3 grams as the most common 

amount. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=79#h5p-35 

Outliers: Outliers are observations that fall outside the overall pattern. We develop a more precise method 
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for identifying outliers later in this module. For now, use your judgment to identify values that appear to be 
exceptions to the general trend in the data. 

Example 

Wrist Measurements 

In the distribution of wrist measurements, there are two women with unusually large wrists. These 

women might be outliers. They are marked in red. 

The man with the smallest wrist measurement is shown in yellow. This man is probably not an 

outlier. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=79#h5p-36 
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INTRODUCTION TO HISTOGRAMS 

What you’ll learn to do: Describe the distribution of 
quantitative data using a histogram. 

When presented with large data sets, the dotplot 
is sometimes cumbersome to put together. In 
addition, it may not be the cleanest way to present 
the data. For large datasets, a histogram can 
represent the numerous data points more simply as 
bars instead of an immense amount of data points in 
a dotplot. Similar to the dotplot, a histogram is 
useful in displaying the distribution (aka shape) of 
the data. 
CC licensed content, Shared previously 
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HISTOGRAMS (1 OF 4) 

Learning OUTCOMES 

• Describe the distribution of quantitative data using a histogram. 

Here we continue our discussion of graphs that describe the distribution of a quantitative variable. 
Recall that our goal in data analysis is to describe patterns in data and create a useful summary about a group. 

When a graph summarizes the distribution of a variable, we can see 

• the possible values of the variable. 
• the number of individuals with each variable value or interval of values. 

As we have seen, a dotplot is a useful graphical summary of a distribution. 
A histogram is an alternative way to display the distribution of a quantitative variable. Histograms are 

particularly useful for large data sets. A histogram divides the variable values into equal-sized intervals. We can 
see the number of individuals in each interval. 

Example 

A Histogram of Hip Measurements 

Here we have three graphs of the same set of hip girth measurements for 507 adults who exercise 

regularly. (Hip girth is the measurement around the hips.) 

Dotplot: 

From the dotplot, we can see that the distribution of hip measurements has an overall range of 79 

to 128 cm. For convenience, we started the axis at 75 and ended the axis at 130. 
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Dotplot with Bins: 

To create a histogram, divide the variable values into equal-sized intervals called bins. In this graph, 

we chose bins with a width of 5 cm. Each bin contains a different number of individuals. For 

example, 48 adults have hip measurements between 85 and 90 cm, and 97 adults have hip 

measurements between 100 and 105 cm. 

Histogram: 

Here is a histogram. Each bin is now a bar. The height of the bar indicates the number of individuals 
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with hip measurements in the interval for that bin. As before, we can see that 48 adults have hip 

measurements between 85 and 90 cm, and 97 adults have hip measurements between 100 and 

105 cm. 

Comment: In the histogram, the count is the number of individuals in each bin. The count is also 

called the frequency. From these counts, we can determine a percentage of individuals with a 

given interval of variable values. This percentage is called a relative frequency. 

The following questions require us to calculate relative frequencies: 

• Approximately what percentage of the sample has hip measurements between 85 and 90 

cm? 

Answer: Of the 507 adults in the data set, 48 have hip measurements between 85 and 90 cm. 

48 out of 507 is 48 ÷ 507 ≈ 0.095 = 9.5% 

So approximately 9.5% of the adults in this sample have hip girths between 85 and 90 cm. 

(This calculation might include adults with as 85-cm hip measurement but not adults with a 90-cm 

hip measurement. See note below.) 

• A pants manufacturer plans to produce three sizes of sweatpants. Size Large will fit hip 

girths of 100 cm or more. What percentage of the sample will wear size Large sweatpants? 

Answer: Of the 507 adults in the data set, 158 adults (97 + 42 + 15 + 3 + 1) = 158 have hip 

measurements of 100 cm or more. 
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158 out of 507 is 158 ÷ 507 ≈ 0.312 = 31.2% 

So 31.2% of the adults in this sample will wear size Large sweatpants. 

Note: In these calculations, we assume that the value of the left-hand endpoint of each bin is 

included in the count for that bin. The value of the right-hand endpoint is not included in the count 

for that bin. For example, the bin corresponding to the interval 85 to 90 includes individuals with 

values of 85 but not 90. In histograms pictured in this course, bins will always include values for the 

left-hand endpoint but not the right-hand endpoint. 

Spotlight on percentages 

Percent means “per hundred.” A percentage describes a number as a fraction out of 100. 

EXAMPLE 

What percentage of adults in this sample wear a large size 
sweatpants? 

1. Identify the appropriate ratio: 158 out of 507 adults will wear large size sweatpants. 

2. Calculate a percentage: 

◦ Divide to convert the ratio into a decimal form: 158÷507 ≈ 0.312 

◦ Multiply by 100 to convert the decimal form to a percentage: 0.312 x 100 = 31.2% 

◦ 31.2% is 31.2 out of 100 

3. Interpret the percentage: 

◦ For every 100 adults in the sample, 31.2 will wear a large. 

◦ 31.2% of the adults in this sample wear large sweatpants. 

General steps: 

1. Identify the appropriate ratio: You can think of the ratio as a fill-in-the-blank: (a part) out 

of (the group) 
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◦ The “part” is often a subset of the group with a special characteristic. 

2. Calculate the percentage: 

◦ Divide: (part) ÷ (group size) 

◦ Multiply by 100 

3. Interpret the percentage in context: 

For every 100 individuals in the group, (the percentage) will have the special characteristic. You 

can interpret the percentage as: Percentage of (group) has (special characteristic). 

 

Try It 

Here is a histogram of the distribution of grades on a quiz. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=86#h5p-37 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=86#h5p-38 

This next exercise will remind us when to use a histogram. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=86#h5p-39 
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HISTOGRAMS (2 OF 4) 

Learning OUTCOMES 

• Describe the distribution of quantitative data using a histogram. 

We have discussed two types of graphs that summarize a distribution of a quantitative variable: dotplots and 
histograms. 

From a dotplot, we also described the pattern in the data with statements about shape, center, and spread. 
We have to be more cautious making similar statements using a histogram because our perception of shape, 
center, and spread can be affected by how the bins are defined. We investigate this important point in the next 
example. 

Example 

We used the same set of data to construct these three histograms of student scores. Are you 

surprised by how different the distribution looks in each histogram? 

The histogram on the left has a bin width of 20. The first bin starts at 40. To create the middle 

histogram, we changed the bin width to 10 but kept the first bin starting at 40. To create the last 

histogram, we kept the bin width at 10 but started the first bin at 45. 
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These changes affect our description of the shape, center, and spread of this set of data. For 

example, in the histogram on the left, the distribution looks symmetric with a central peak. In the 

histogram on the right, the distribution looks slightly skewed to the right. Based on the middle 

histogram, we might estimate that most students scored between 70 and 80. But the histogram on 

the right suggests that typical students scored between 65 and 75. 

Why does changing the bin size and the starting point of the first bin change the 

histogram so drastically? 

When we change the bins, the data gets grouped differently. The different grouping affects the 

appearance of the histogram. 

To illustrate this point, we highlighted the five students who scored in the 70s in each histogram. 

• In the histogram on the left, these five students are grouped in the middle bin with other 

students who scored between 60 and 80. 

• In the histogram in the middle, these five students form a bin of their own, since no other 

students scored between 70 and 80. 

• In the histogram on the right, these five students are in separate bins. 

Which histogram gives the most helpful summary of the distribution? 

For this situation, the middle histogram is probably the most useful summary because the intervals 

correspond to letter grades. 

Our general advice is as follows: 

• Avoid histograms with large bin widths that group data into only a few bins. A histogram 

constructed with large bin widths will show the distribution as a “skyscraper.” This does not 
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give good information about variability in the distribution. 

• Avoid histograms with small bin widths that group data into lots of bins. A histogram 

constructed with small bin widths will show the distribution as a “pancake.” This does not 

help us see the pattern in the data. 

Use the simulation below to answer the questions in the next Try It. 
Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=89 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=89#h5p-40 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=89#h5p-41 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=89#h5p-42 

These next exercises focus on recognizing the shape of a distribution using a histogram. We know that 
changes in the bin width can change the appearance of the distribution. But a histogram with an appropriate 
bin width can give good information about the shape of the distribution. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=89#h5p-43 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=89#h5p-44 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=89#h5p-45 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=89#h5p-46 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=89#h5p-47 
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HISTOGRAMS (3 OF 4) 

Learning OUTCOMES 

• Describe the distribution of quantitative data using a histogram. 

In the next example, we use a histogram to describe the shape, center, and spread of the distribution of a 
quantitative variable. 

Example 

Oscar for Best Actress 

Here we have the ages of the actresses who won an Oscar for Best Actress from 1970 to 2001. 

Click here to see the entire data set. 

Shape: The distribution of ages appears skewed to the right. Most of the Oscar winners for Best 

Actress are young. More precisely, we see that 91% (29 of 32) of the winners under 50 years of age, 

and 56% (18 of 32) of the winners are under the age of 35. 
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Center: The distribution of ages appears to be centered between 30 and 35 years; 28% (9 of 32) of 

the winners are in this age range. 

Spread: The data range from about 20 to about 80, so the overall range is approximately 60. There 

is a lot of variability in the ages of actresses who have won the Oscar for Best Actress. 

Outliers: Winners older than 60 years are unusual. There are three outliers: one in each of the 

following intervals: 60–65, 70–75, 75–80. 

Now we summarize all of these observations in a paragraph: 

Between the years of 1970 and 2001, the Oscar for Best Actress was awarded most often to young 

actresses: 56% (18 of 32) of the winners were under the age of 35, with 28% (9 of 32) of the 

winners between 30 and 35 years of age. Winners ranged in age from about 20 to about 80, but 

only 3 of the 32 were over 60. 

Here is a paragraph that uses more formal vocabulary to summarize the distribution of ages: 

Between the years of 1970 and 2001, the Oscar for Best Actress was awarded most often to young 

actresses. The distribution of ages is skewed to the right: 56% (18 of 32) of the winners were under 

the age of 35, with the center of the distribution between 30 and 35 years of age. With winners 

ranging in age from about 20 to about 80, the overall range of the distribution is about 60. But 

much of this variability is due to three outliers who were older than 60 when they won the award. 
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HISTOGRAMS (4 OF 4) 

Learning OUTCOMES 

• Describe the distribution of quantitative data using a histogram. 

We now use histograms to compare the distributions of a quantitative variable for two groups of individuals. 
Previously, we did a similar comparison using dotplots. As before, our descriptions focus on the overall pattern 
(shape, center, and spread) as well as deviations from the pattern (outliers). We also use percentages to describe 
and compare different intervals of variable values, since histograms make it easy to do so. 

Example 

Smoking and Birth Weight 

Does smoking during pregnancy have an impact on birth weight? To investigate this question, 

doctors collected data on 189 new mothers who gave birth at a hospital in Massachusetts during 

the 1980s. 

Here we use histograms to compare the distribution of birth weights for mothers who smoked 

during pregnancy with mothers who did not smoke. The table shows the numbers of mothers with 

babies in each interval of birth weights. (Left endpoints are included in the bin, so a 1,000-gram 

baby is in the interval 1,000–1,500 grams.) 

Note: For easy and more accurate visual comparisons, both histograms have the same horizontal 

scale and bin width. Also, the scale on the vertical axis is the same. So we can directly compare the 

heights of the bars to compare the number of mothers with babies in each interval of birth 

weights. 
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Following are some observations about the shape, center, and spread: 

Nonsmokers: The distribution of birth weights for the nonsmokers appears skewed slightly to the 

left. We estimate that birth weights for this group fall between approximately 1,000 and 5,000 

grams for an overall range of approximately 4,000 grams. For nonsmokers, nearly half of the babies 

have a birth weight between 3,000 and 4,000 grams (29 + 27 = 56, 56/115 = 48.7%) with fewer 

babies in the lower weight ranges. 

Smokers: The distribution of birth weights for the smokers appears slightly skewed to the right. 

We estimate the birth weights for this group fall between approximately 500 and 4,500 grams for 

an overall range of approximately 4,000 grams. For smokers, nearly half of the babies have a birth 

weight between 2,000 and 3,000 grams (16 + 22 = 38, 38 / 74 = 51%) with fewer babies in heavier 

weight ranges. 

Comment: As we have seen, the choice of bin width can affect the shape of a histogram. We also 

cannot make precise statements about center and spread because our sense of “typical” range is 

also affected by the choice of bin width. 

Another strategy for comparing distributions is to use a benchmark. Here are some examples: 

1. Doctors define low birth weight as a birth weight below 2,500 grams. Calculate and compare 

the percentage of smokers and nonsmokers with low-birth-weight babies by this 

definition.Nonsmokers: Of babies born to mothers who did not smoke, 3 + 8 + 18 = 29 

weighed less than 2,500 grams, so 25.2% (29 of 115) of the babies born to nonsmokers fit the 

definition of low birth weight.Smokers: Of babies born to mothers who smoked, 

1 + 1 + 6 + 22 = 30 weighed less than 2,500 grams, so 40.5% (30 of 74) of the babies born to 

smokers fit the definition of low birth weight. 

2. A condition called macrosomia (also known as big baby syndrome) is defined as a birth 

weight of 4,000 grams or more. Calculate and compare the percentage of smokers and 

nonsmokers with babies that fit the definition of macrosomia.Nonsmokers: Of babies born to 
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mothers who did not smoke, 6 + 2 = 8 weighed 4,000 grams or more, so 7.0% (8 of 115) of 

the babies born to nonsmokers fit the definition of macrosomia.Smokers: Of babies born to 

mothers who smoked, only 1 weighed 4,000 grams or more, so 1.4% (1 of 74) of the babies 

born to smokers fit the definition of macrosomia. 

Now we synthesize these observations into a paragraph. 

Tip: Be sure to emphasize the comparison of the groups. Develop a thesis statement if appropriate. 

In this observational study, we compared mothers who smoked during pregnancy to mothers who 

did not smoke during pregnancy. The variable is the birth weights of their babies. Both groups had 

a lot of variability in birth weights, with identical overall range estimates of 4,000 grams. 

There was also a lot of overlap in the distributions. Nonsmokers had babies that weighed between 

approximately 1,000 and 5,000 grams. Smokers had babies that weighed between approximately 

500 and 4500 grams. 

However, we also observe some important differences in the typical ranges of birth weights for the 

two groups. For nonsmokers, nearly half of the babies have a birth weight between 3,000 and 

4,000 grams (56 out of 115, 48.7%) with fewer babies in the lower weight ranges. For smokers, 

nearly half of the babies have a birth weight between 2,000 and 3,000 grams (40 of 74, 54%) with 

fewer babies in heavier weight ranges. 

If we use the medical definition of low birth weight (under 2,500 grams), we see that smokers in 

this study have a much higher incidence of low birth weights: 25.2% (29 of 115) of the babies born 

to nonsmokers fit the definition of low birth weight, compared to 40.5% (30 of 74) of the babies 

born to smokers. In this study, smoking is associated with lower birth weights, though the 

variability in the data suggests that other variables also contribute to birth weight. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=93#h5p-48 

Let’s Summarize 

In “Distributions for Quantitative Data,” we focused on describing the distribution of a quantitative variable. 

• In a graph that summarizes the distribution of a quantitative variable, we can see 
◦ the possible values of the variable. 
◦ the number of individuals with each variable value or interval of values. 

• To analyze the distribution of a quantitative variable, we described the overall pattern of the data (shape, 
center, spread), and any deviations from the pattern (outliers). 

◦ We described the shape of a distribution as left-skewed, right-skewed, symmetric with a central peak 
(bell-shaped), or uniform. Not all distributions have a simple shape that fits into one of these 
categories. 

◦ The center of a distribution is a typical value that represents the group. We discuss ways to identify 
the center of a distribution in “Measures of Center.” 

◦ The spread of a distribution is a description of how the data varies. One measurement of spread is 
the overall range of the data (largest value – smallest value). We also looked at a typical range of 
values. We discuss ways to identify a typical range in “Quantifying Variability Relative to the 
Median” and “Quantifying Variability Relative to the Mean.” 

◦ Outliers are data points that fall outside the overall pattern of the distribution. 
• We used two types of graphs to analyze the distribution of a quantitative variable: 

◦ Dotplots 
◦ Histograms 

• Following are some observations about dotplots: 
◦ Individual variable values are visible, particularly when the data set is small. 
◦ Descriptions of shape, center, and spread are not affected by how the dotplot is constructed. 
◦ We can accurately calculate the overall range (largest value – smallest value). 

• Following are some observations about histograms: 
◦ Individual variable values are not visible. 
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◦ Grouping individuals into bins of equal-sized intervals is particularly useful when analyzing large 
data sets. 

◦ We can easily use percentages, also called relative frequencies, to describe the distribution. 
◦ Descriptions of shape, center, and spread are affected by how the bins are defined. 

• How do we decide when to use a dotplot and when to use a histogram? There are no rules here. Each 
type of graph can highlight different aspects of the data. 
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INTRODUCTION TO MEASURES OF CENTER 

What you’ll learn to do: Use mean and median to describe 
the center of a distribution. 

In this section, we define three different measures of 
center: mean, median, and mode, all of which are different 
ways to define an average. Casually speaking, the “typical” 
value in the distribution can be roughly represented by 
these measures of center. Depending on the data and its 
distribution, one measure of center might be most 
informative or most representative of the “typical” value. 
In analyzing quantitative data, the measure of center will 
be one key component. 
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MEAN AND MEDIAN (1 OF 2) 

Learning OUTCOMES 

• Use mean and median to describe the center of a distribution. 

Recall that when we describe the distribution of a quantitative variable, we describe the overall pattern (shape, 
center, and spread) in the data and deviations from the pattern (outliers). In our previous discussion of patterns 
in quantitative data, we identified a typical value in the distribution. We used this single value of the variable to 
represent the entire group. This is an informal way to think about the center of the distribution. In “Measures 
of Center,” we focus on describing the center of a distribution more precisely. 

We develop two different measurements for identifying the center of a distribution: the mean and the 
median. Each measure has special properties. 
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Mean 

The mean is the average. It is written as  and pronounced “x-bar.” To calculate the mean, we add the data 
values and divide by the number of data points. 

We can write this as a formula. 

In this formula, the symbol  means sum (add up the values). The  represents the data values. The letter 

“n” represents the number of data values. 

Example 

Calculating the Mean 

Let’s find the mean of a set of three quiz scores: 70, 85, 82. In this situation, n is 3 because there are 

3 quiz scores. We add the “x” values, 70 + 85 + 82 to get 237, then divide by 3 to get a mean of 79. 

We could write this calculation using the formula: 

Example 

Average Homework Score 

Suppose Beth’s homework scores are70, 80, 80, 80, 85, 86, 90, 90, 95. There is variability in her 

homework scores, but the mean represents her typical performance on homework. 

The mean of her scores is 

So Beth’s performance on homework varies, but on average, she makes an 84 on each assignment. 

137  |  



In other words, we can understand the mean as the score Beth would have on every assignment if 

she always made the same grade – that is, if she made an 84 on all nine homework assignments. 

Her mean score is 84, since 

From this viewpoint, the mean is the fair share measure of center. 

Notice, however, that Beth did not actually make an 84 on any assignment. The mean does not 

give us information about any individual homework score or about how the homework scores vary. 

It only gives us a sense of her performance by averaging the values across all the assignments. 

Here is the mean marked on a dotplot of the distribution of homework scores. For this set of 

scores, the mean appears to be a pretty good measure of how Beth performed overall. 

The mean is also referred to as the balancing point of a distribution. If we measure the distance 

between each data point and the mean, the distances are balanced on each side of the mean. 

For example, a homework score of 95 is 11 points above the mean, as shown. 

A homework score of 80 is 4 points below the mean. In the table, we calculate the sum of the 

distances above and below the mean. Notice that the sum of the distances above and below the 

mean are equal. In this way, the mean is a balancing point for the distribution. 
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We can also view the distances below the mean as negative and the distances above the mean as 

positive. When we add these “signed” distances together, we get 0 

(−14) + (−4) + (−4) + (−4) + 1 + 2 + 6 + 6 + 11 

(−26) + 26 

The mean is the only measure of center with this special property. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=101#h5p-49 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=101#h5p-50 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=101#h5p-51 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=101#h5p-52 

Median 

The median is another way to identify a typical value. The median is the middle of the data when all the values 
are listed in order. The median divides the data into two equal-sized groups. There is as much data below the 
median as above it. 

Example 

Median Homework Score 

Let’s return to Beth’s homework scores: 70, 80, 80, 80, 85, 86, 90, 90, 95. 
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The median score is 85. This is the center score. There are four homework scores below 85 and four 

homework scores above 85. 

For this data set, the median was one of the homework scores. This will not always be the case. So, 

like the mean, the median does not give us information about any individual homework score or 

about how the homework scores vary. It only gives us a sense of Beth’s performance by locating a 

value that is the middle of the actual scores. 

Here is the median marked on a dotplot of the distribution of homework scores. For this set of 

scores, the median is also a pretty good measure of how Beth performed overall. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=101#h5p-53 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=101#h5p-54 
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MEAN AND MEDIAN (2 OF 2) 

Learning OUTCOMES 

• Use mean and median to describe the center of a distribution. 

Choosing between Median and Mean 

We now have a choice between two measurements of center. We can use the median, or we can use the mean. 
How do we decide which measurement to use? 

In these next examples, we learn that the shape of the distribution and the presence of outliers helps us 
answer this question. 

Example 

Homework Scores with an Outlier 

Here is a dotplot of the 26 homework scores earned by a student. Notice that the distribution of 

scores has an outlier. This student typically scores between 80 and 90 on homework, but there is 

one score of 0. Which measurement of center gives a better summary of this distribution? 

• Median = 84.5 

• Mean = 81.8 
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Both measures of center are in the B grade range, but the median is a better summary of this 

student’s homework scores. The outlier does not affect the median. This makes sense because the 

median depends primarily on the order of the data. Changing the lowest score does not affect the 

order of the scores, so the median is not affected by the value of this point. 

The mean is not a good summary of this student’s homework scores. The outlier decreases the 

mean so that the mean is a bit too low to be a representative measure of this student’s typical 

performance. This makes sense because when we calculate the mean, we first add the scores 

together, then divide by the number of scores. Every score therefore affects the mean. 

Note: In the distribution above, there are 26 homework scores for this student. If the teacher made 

fewer homework assignments, a zero would have a greater impact on the mean. We can see this in 

the distribution below. This distribution has only 10 scores. The one grade of 0 moves the mean 

into the C grade range. 

Example 

Skewed Incomes 

In this example, we look at how skewness in a data set affects the mean and median. The following 

histogram shows the personal income of a large sample of individuals drawn from U.S. census data 
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for the year 2000. Notice that it is strongly skewed to the right. This type of skewness is often 

present in data sets of variables such as income. 

The mean and median for this data set are 

• Mean = $24,000 

• Median = $16,900 

Here again we see that the mean income does not represent the typical income for this sample 

very well. The small number of people with higher incomes increase the mean. The mean is too 

high to represent the large number of people making less than $20,000 a year. A small number of 

high incomes gives the misleading impression that the typical income in the sample is $24,000. The 

small number of people with higher incomes does not impact the median, so the median income of 

$16,900 better represents the typical income in this sample. 

What’s the Main Point? 

These examples illustrate some general guidelines for choosing a measure of center: 
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• Use the mean as a measure of center only for distributions that are reasonably symmetric with a central 
peak. When outliers are present, the mean is not a good choice. 

• Use the median as a measure of center for all other cases. 

Both of these examples also highlight another important principle: Always plot the data. 
We need to use a graph to determine the shape of the distribution. By looking at the shape, we can determine 

which measures of center best describe the data. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=105#h5p-55 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=105#h5p-56 

Instructions for using the simulation: 

• To add a point, move the slider to the value you want, then click Add. 
• To remove a point, move the slider to the value you want, then click Minus. 
• To reset the simulation, click the button in the upper left corner that says Reset. 

Click here to open this simulation in its own window. 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=105 

Let’s Summarize 

• We have two different measurements for determining the center of a distribution: mean and median. 
When we use the term center, we mean a typical value that can represent the distribution of data. 

• The mean is the average. We calculate the mean by adding the data values and dividing by the number of 
individual data points. 

• The mean has the following properties: 
◦ It is the fair-share measure. For example, imagine that you have 10 homework scores. Say that your 

scores vary, but the mean is 84. Then you have 84(10) = 840 points, which is like having an 84 on 
each of the 10 assignments. 

◦ The mean is also referred to as the balancing point of a distribution. If we measure the distance 
between each data point and the mean, the distances are balanced on each side of the mean. 

• The median is the physical center of the data when we make an ordered list. It has the same number of 
values above it as below it. 

• General Guidelines for Choosing a Measure of Center 

• Use the mean as a measure of center only for distributions that are reasonably symmetric with a central 
peak. When outliers are present, the mean is not a good choice. 

• Use the median as a measure of center for all other cases. 
• Always plot the data. We need to use a graph to determine the shape of the distribution. By looking at 

the shape, we can determine which measures of center best describe the data. 
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INTRODUCTION TO MEASURES OF SPREAD 

What you’ll learn to do: Use a five-number summary and a 
boxplot to describe a distribution. 

In this section, we define ways to measure the spread of the data. If our measure of center is the median, we 
will use a visual interpretation with boxplots. If our measure of center is the mean, we will use something called 
standard deviation. In analyzing quantitative data, the measure of spread will be another key component. 
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INTERQUARTILE RANGE AND BOXPLOTS (1 
OF 3) 

Learning OUTCOMES 

• Use a five-number summary and a boxplot to describe a distribution. 

Introduction 

Recall that when we describe the distribution of a quantitative variable, we describe the overall pattern (shape, 
center, and spread) in the data and deviations from the pattern (outliers). In “Distributions for Quantitative 
Data” and “Measures of Center,” we focused on describing the shape and center of a distribution. We also 
investigated how the shape influences our choice of measurements of center. In “Quantifying Variability 
Relative to the Median” and Quantifying Variability Relative to the Mean,” we focus on describing the spread 
of a distribution more precisely. 
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We begin with describing spread about the median. 

Example 

Two Sets of Exam Scores 

Consider the following two distributions of exam scores: 

Both distributions have a median of 74.5. Which distribution has more variability? 

The answer to this question depends on how we measure variability. Both distributions have the 

same range. The range is the distance spanned by the data. We calculate the range by subtracting 

the minimum value from the maximum value. 

• Range = Maximum value – minimum value 

For both of these data sets, the range is 55 (here is how we calculated the range: 95 – 40 = 55). If 

we use the range to measure variability, we say the distributions have the same amount of 

variability. 

But the variability in the distributions differ when we look at how the data is distributed about the 

median. Set A has a large portion of its data close to the median. This is not true for Set B. From 

this viewpoint, Set A has less variability about the median. 

Now we develop a way to measure the variability about the median. To do so, we use quartiles. Quartile 
marks divide the data set into four groups with equal counts. 
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Example 

Quartiles and the Interquartile Range 

We added dividers to show the quartile marks for the two sets of exam scores. Quartile marks 

divide the data set into four subgroups with the same number of individuals in each subgroup. 

Notice: For a data set, there is an equal amount of data in each quartile. 

• Class A has 32 scores, so each quartile contains eight scores (32 ÷ 4 = 8). 

• Class B has 20 scores, so each quartile contains five scores (20 ÷ 4 = 5). 

The quartiles together with the minimum and maximum scores give the five-number summary: 

• Class A: Min: 40 Q1: 71 Q2: 74.5 Q3: 78.5 Max: 95 

• Class B: Min: 40 Q1: 61 Q2: 74.5 Q3: 89 Max: 95 

Notice: The second quartile mark (Q2) is the median. 

Notice: Some quartiles exhibit more variability in the data even though each quartile contains the 

same amount of data. 

• For example, 25% of the scores in Class A are between 40 and 71. There is a lot of variability 

in this first quartile (Q1). The eight scores in Q1 vary by 30 points. 

• Compare this to the third quartile (Q3) for Class A: 25% of the scores in Class A are between 

74.5 and 78.5. There is not much variability in Q3. The 8 scores in Q3 vary by only 4 points. 

How are quartiles used to measure variability about the median? The interquartile range (IQR) is 

the distance between the first and third quartile marks. The IQR is a measurement of the variability 

about the median. More specifically, the IQR tells us the range of the middle half of the data. 

Here is the IQR for these two distributions: 
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• Class A: IQR = Q3 – Q1 = 78.5 – 71 = 7.5 

• Class B: IQR = Q3 – Q1 = 89 – 61 = 28 

As we observed earlier, Class A has less variability about its median. Its IQR is much smaller. The 

middle 50% of exam scores for Class A vary by only 7.5 points. The middle 50% of exam scores for 

Class B vary by 28 points. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=112#h5p-57 

Using the IQR to Identify Outliers 

We consider a point an outlier when it is substantially above Q3 or substantially below Q1. To make this 
statement more precise, we mark off a distance of 1.5 IQRs above Q3 and below Q1. Any point outside of this 
range is considered an outlier. 

We can write this idea as a formula: 
A value is an outlier when 

• the value is greater than Q3 + 1.5 * IQR or 
• the value is less than Q1 – 1.5 * IQR 

To make more sense of this rule, let’s look at a visual example. 
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Example 

Using IQR to Identify Outliers 

For the data set in the dotplot, Q1 = 15 and Q3 = 18, so the IQR = 18 – 15 = 3. 

• Q1 – 1.5 * IQR = 15 – 1.5 * 3 = 15 – 4.5 = 10.5 

◦ This cutoff is shown in green on the dotplot. 

◦ The data point at 10 is considered an outlier because it is below 10.5. 

• Q3 + 1.5 * IQR = 18 + 1.5 * 3 = 18 + 4.5 = 22.5 

◦ This cutoff is shown in red on the dotplot. 

◦ The data points at 24, 27, and 29 are considered outliers because they are above 22.5. 

The points in purple are outliers by the IQR definition. 

Try It 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=112#h5p-58 

Let’s Summarize 

• The range measures the variability of a distribution by looking at the interval covered by all the data. 
The IQR measures the variability of a distribution by giving us the interval covered by the middle 50% 
of the data. 

• The five-number summary of a distribution consists of the minimum, quartile 1, median, quartile 3, 
and maximum. 

• The IQR is the measure of spread we should use when using the median to measure center. 
• When using the median and IQR to measure center and spread, a data point is considered an outlier if it 

satisfies one of the following conditions. 
◦ The data value is more than 1.5 IQRs greater than Q3 (i.e., the value is greater than Q3 + 1.5 * 

IQR) 
◦ The data value is more than 1.5 IQRs less than Q1 (i.e., the value is less than Q1 − 1.5 * IQR) 
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INTERQUARTILE RANGE AND BOXPLOTS (2 
OF 3) 

Learning OUTCOMES 

• Use a five-number summary and a boxplot to describe a distribution. 

Introduction 

On the previous page, we learned about the five-number summary. At this point, you should know the 
following: 

• The five-number summary uses quartiles to identify the center and spread of a distribution. 
• The median (which is Q2) is a measure of center. We also view the median as a typical value that 

represents the distribution. 
• The values between Q1 and Q3 give a typical range of values. 
• The IQR is a way to measure the variability about the median. 

Now we use the five-number summary to make a new type of graph, the boxplot. Boxplots are commonly 
used to summarize a distribution of a quantitative variable. 

Example 

Boxplots for Exam Scores 

Here are the two sets of exam scores from the previous example. Recall that we divided the data 
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into quartiles. In a data set, each quartile contains the same number of scores. In other words, each 

quartile contains 25% of the data. 

Here is the five-number summary for these two distributions: 

• Class A: Min: 40 Q1: 71 Q2: 74.5 Q3: 78.5 Max: 95 

• Class B: Min: 40 Q1: 61 Q2: 74.5 Q3: 89 Max: 95 

To create the boxplot for each distribution, 

• Draw a box from Q1 to Q3. 

• Draw a vertical line in the box at the median. 

• Extend a tail from Q1 to the smallest value that is not an outlier and from Q3 to the largest 

value that is not an outlier. 

• Indicate outliers with asterisks (*). 

Notice: A long box in the boxplot indicates a large IQR, so the middle half of the data has a lot of 

variability. A short box in the boxplot indicates a small IQR. In this case, the middle half of the data 

has little variability. 

Frequently, side-by-side boxplots are drawn vertically. Here we drew vertical dotplots with their 

boxplots for the exam scores from the two classes. 
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Note: Some statistical packages offer two options: a boxplot and a modified boxplot. We drew 

modified boxplots in this example. In a modified boxplot, outliers are marked with an asterisk (*). 

For a boxplot that is not modified, the tails extend to the minimum and maximum values. In this 

type of boxplot, we cannot see outliers. 

Making a Boxplot: 

Now we walk through the steps for making a modified boxplot using the distribution of ages for winners of 
the Oscar Award for Best Actress from 1970 to 2001. The five-number summary for this distribution is 

• Min: 21 Q1: 32 Median: 35 Q3: 41.5 Max: 80 

Using the IQR definition of an outlier, there are three outliers: 61, 74, and 80. 

161  |  



One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=117#oembed-1 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=117#h5p-59 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=117#h5p-60 

At this point, you should know how to 

• Create a boxplot from a five-number summary. 
• Use a boxplot to identify and interpret quartiles. 
• Identify the median and the IQR of a distribution from a boxplot. 

Now we want to focus on what a boxplot does not tell us. A boxplot does not give us information about the 
following: 

• The number of data points in the data set. 
• The number of data points within each quartile (though each quartile contains the same number of data 

points). 
• The pattern of the data within each quartile. 
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Here are four data sets that illustrate these ideas. 

How are these data sets similar? Notice that the four data sets have the same boxplot. This is because the 
five-number summary is the same for each data set. The data sets have identical minimum value, maximum 
value, and quartile marks, so we could say that these data sets have the same center and spread. 

• Center: Each data set has a median of 10. 
• Spread: In each data set, the middle half of the data varies from 7 to 14, so the IQR is 7. In each data set, 

the data varies from 4 to 19, so the overall range is 15. 

How are these data sets different? The data sets do not have the same number of data points. Also, the shape 
of each distribution is different. 

The goal of the next Try It activity is to develop a deeper understanding of how the interquartile range 
(IQR) measures variability about the median. Use the simulation below for the next activity. You have used a 
similar simulation before. Recall the instructions for adding or removing data points: 

• To add a point, move the slider to the value you want, then click Add. 
• To remove a point, move the slider to the value you want, then click Minus. 
• To reset the simulation, click the button in the upper left corner that says Reset. 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=117 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=117#h5p-61 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=117#h5p-62 
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INTERQUARTILE RANGE AND BOXPLOTS (3 
OF 3) 

Learning OUTCOMES 

• Use a five-number summary and a boxplot to describe a distribution. 

Comparing Distributions with Side-by-Side Boxplots 

In the next two examples, we again use boxplots to compare two distributions. This time we focus on writing 
a description of the two distributions. We practiced writing descriptions in the earlier section, “Distributions 
for Quantitative Data,” using dotplots and histograms. Now we use boxplots. As before, we describe shape, 
center, spread, and outliers. But now we use the five-number summary to make our descriptions more precise. 

Example 

Best Actor/Actress Oscar Winners 

So far we have examined the age distributions of Oscar winners for males and females separately. 

It will be interesting to compare the age distributions of actors and actresses who won best acting 

Oscars. To do that, we look at side-by-side boxplots of the age distributions by gender. 
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• Actors: Min = 31, Q1 = 37.75, M = 42.5, Q3 = 48.75, Max = 76 

• Actresses: Min = 21, Q1 = 32, M = 35, Q3 = 41.5, Max = 80 

Based on the graph and numerical measures, we can make the following comparison between the 

two distributions: 

Note: A good summary compares the two distributions using shape, center, spread, and outliers. 

Let’s begin with observations about these characteristics of the distributions. 

Shape: The shape of a distribution can be hard to determine from the boxplot, but we can compare 

the variability in the upper half of the data (Max − Median) to the variability in the lower half of the 

data (Median − Min) to get a sense of shape. For the men, the distribution appears skewed to the 

right because the lower half of the data has less variability than the upper half. The lower half of 

the data has a range of 11.5 years (42.5 − 31), compared to the upper half of the data with a range of 

33.5 years (76 − 42.5). The distribution for women also appears right-skewed. The lower half of the 

data has a range of 14 years (35 − 21), compared to a range of 45 years for the upper half of the 

data (80 − 35). In both cases, the shape suggests that the Oscar is awarded to younger actors and 

actresses. 

Center: Actresses tend to win the Oscar at a younger age than do actors. The median age for 

females (35) is lower than for the males (42.5). Note also that the third quartile of the females’ 

distribution (41.5) is lower than the median age for males. It tells us that only 25% of the actresses 
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were 41.5 years old or older when they won the Oscar, compared to 50% of the males who were 

42.5 years old or older. 

Spread: Not only do actresses win at a younger age, but the Oscar is awarded more consistently to 

younger actresses, as we can see by comparing the interquartile ranges. There is less variability in 

the middle half of the actresses’ ages (IQR = 9.5) than in the actors’ ages (IQR = 11). On the other 

hand, the actresses have more variability in their overall ages (range = 59) compared to the actors 

(range = 45). 

Outliers: We see that we have outliers in both distributions. There is only one high outlier in the 

actors’ distribution (76, Henry Fonda, On Golden Pond), compared with three high outliers in the 

actresses’ distribution. 

Now let’s pull these observations together into a paragraph. A good paragraph compares the two 

distributions and uses observations about the distributions to support a central thesis. 

In general, actresses win the Best Actress Oscar at a younger age than do actors. The median age 

for actresses is 35, compared to 42.5 for actors. Not only do actresses win at a younger age, the 

Oscar is awarded more consistently to younger actresses, as seen when we compare the 

interquartile ranges. There is less variability in the middle half of the actresses’ ages (IQR = 9.5) than 

in the actors’ ages (IQR = 11). Both distributions have older winners that are outliers. These older 

winners are unusual and skew the distribution of ages to the right. 

Example 

Temperature of Pittsburgh vs. San Francisco 

To compare the average high temperatures of Pittsburgh to those of San Francisco, we look at the 

following side-by-side boxplots and supplement the graph with the descriptive statistics of each of 

the two distributions. 
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When looking at the graph, the similarities and differences between the two distributions are 

striking. Both distributions have roughly the same center (medians are 61.4 for Pittsburgh and 62.7 

for San Francisco). However, the temperatures in Pittsburgh have a much larger variability than the 

temperatures in San Francisco (Range: 49 vs. 12; IQR: 36.5 vs. 5). 

The practical interpretation of the results we obtained is that the weather in San Francisco is much 

more consistent than the weather in Pittsburgh, which varies a lot during the year. Also, because 

the temperatures in San Francisco vary so little during the year, knowing that the median 

temperature is around 63 is actually very informative. On the other hand, knowing that the median 

temperature in Pittsburgh is around 61 is practically useless, since temperatures vary so much 

during the year and can get much warmer or much colder than in San Francisco. 

Note that this example provides more intuition about variability by interpreting small variability as 

consistency and large variability as lack of consistency. Also, through this example, we learned that 

the center of the distribution is more meaningful as a typical value for the distribution when there 

is little variability (or, as statisticians say, little “noise”) around it. When there is large variability, the 

center loses its practical meaning as a typical value. 
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Let’s Summarize 

• The range measures the variability of a distribution by looking at the interval covered by all the data. 
The IQR measures the variability of a distribution by giving us the interval covered by the middle 50% 
of the data. 

• The five-number summary of a distribution consists of the minimum, quartile 1, median, quartile 3, 
and maximum. 

• The IQR is the measure of spread we should use when using the median to measure center. 
• When using the median and IQR to measure center and spread, a data point is considered an outlier if it 

satisfies one of the following conditions. 
◦ More than 1.5 IQRs greater than Q3 (i.e., the value is greater than Q3 + 1.5 * IQR). 
◦ More than 1.5 IQRs less than Q1 (i.e., the value is less than Q1 – 1.5 * IQR). 

• The boxplot is a graphical representation of a data set. It displays the five-number summary and 
highlights any points that are considered outliers (using the 1.5 * IQR rule described in the previous 
bullet). 

• Side-by-side boxplots are commonly used to compare two data sets. 
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INTRODUCTION TO DESCRIBING A 
DISTRIBUTION 

What you’ll learn to do: Describe a distribution using mean 
and standard deviation 

As important as proper study design, clearly 
representing data is a fundamental part of a good 
statistical analysis. In describing a distribution based on 
quantitative data, we present both numerical and 
graphical summaries. Putting our previous sections 
together, we first begin by visually representing the data in 
a dotplot or histogram. Based on the shape, skew, and outliers, appropriate measures of center and spread help 
us further understand the distribution. 
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STANDARD DEVIATION (1 OF 4) 

Learning OUTCOMES 

• Use mean and standard deviation to describe a distribution. 

Introduction 

In the section “Distributions for Quantitative Data,” we discussed the spread of a distribution in terms of a 
typical range of values. In “Quantifying Variability Relative to the Median,” we made this idea more precise 
with the interquartile range, IQR. The IQR gives us a measure of spread about the median. We defined a 
typical range of values about the median as the values between the first and third quartiles. 

Now we want to develop a numerical measure of spread that we can use with the mean. In constructing a 
measure of spread about the mean, we want to compute how far a “typical” number is away from the mean. 

Measuring Spread about the Mean 

Let’s consider the sample data set 2, 2, 4, 5, 6, 7, 9. The mean of this data set is 

Here is a dotplot of this data set with the mean marked by the vertical blue line. 

We can see that some data is close to the mean and some data is further from the mean. 
Since we want to see how the data points deviate from the mean, we determine how far each point is from 
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the mean. We compute the difference between each of these values and the mean. These differences are called 
the deviations from the mean for each point. 

2 − 5 = −3 

2 − 5 = −3 

4 − 5 = −1 

5 − 5 = 0 

6 − 5 = 1 

7 − 5 = 2 

9 − 5 = 4 

When visualized on a dotplot, these differences are viewed as distances between each point and the mean. A 
negative difference indicates that the data point is to the left of the mean (shown in blue on the graph below). A 
positive difference indicates that the data point is to the right of the mean (shown in green on the graph below). 

Our goal is to develop a single measurement that summarizes a typical distance from the mean. Before we 
continue, let’s practice determining the distance of a single data point from the mean. 

Try It 

The two questions below refer to the following dotplot. The mean is 9 and it is marked by the 

vertical blue line. 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=133#h5p-63 

Since we want to determine how far a typical number is away from the mean, we might try to average 
these numbers. However, if we add them all up, we will get 0 (try it). Getting 0 with this procedure (finding 
differences from mean and adding them all together) is no accident – it always produces 0. We have to 
overcome this problem. 

Recall that we are trying to find the typical distance between data points and the mean. It therefore makes 
sense to take the absolute value of each of these differences. 

| 2 − 5 | = | −3 | = 3 

| 2 − 5 | = | −3 | = 3 

| 4 − 5 | = | −1 | = 1 

| 5 − 5 | = | 0 | = 0 

| 6 − 5 | = | 1 | = 1 

| 7 − 5 | = | 2 | = 2 

| 9 − 5 | = | 4 | = 4 

Now we can compute the average of these deviations. There are seven data points, so we add these seven 
distances and divide by 7. The result is a measure of spread about the mean called the average deviation from 
the mean (ADM). 
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We can indicate this average deviation on a dotplot with a graphic similar to a boxplot as follows. 

The shaded box in the middle is centered at the mean. It extends left and right a distance of 1 average 
deviation from the mean. Because the average deviation about the mean for this data set is 2, the box starts at 3 
(because 5 − 2 = 3) and ends at 7 (because 5 + 2 = 7). In this way, we can use the ADM to define a typical range 
of values about the mean. Notice that this typical range of values (within 1 ADM of the mean) contains more 
than half of the values in the data set. 

The goal of the next Try It exercise is to improve our intuition of what the ADM measures. We use the 
following simulation to investigate how the ADM responds to changes in a data set. 

Instructions for adding or removing data points: 

• To add a point, move the slider to the value you want, then click the + sign. 
• To remove a point, move the slider to the value you want, then click the – sign. 
• To reset the simulation to a blank screen, click the button in the upper left corner that says Reset. 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=133 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=133#h5p-64 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=133#h5p-65 

Before we continue, let’s summarize our main points: 

• The ADM (average distance from the mean) is a measurement of spread about the mean. More 
precisely, ADM measures the average distance of the data from the mean. 

• We can use the ADM to define a typical range of values about the mean. We mark the mean, then we 
mark 1 ADM below the mean and 1 ADM above the mean. This interval is centered at the mean and 
captures typical values about the mean. 

Using these two ideas, we can estimate the ADM by looking at a graph of the distribution of data. We 
practice this important skill in the next Try It. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=133#h5p-66 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=133#h5p-67 

In the next example, we compare the ADM as a measure of spread to the other ways we have measured 
spread. 

Example 

Measuring Variability in Different Ways 

The following dotplots show the potassium content in 76 cereals. Compare children’s cereals to 

adult cereals. Which type of cereal has more variability in potassium content? 
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We can visually see that there is more variability in the potassium content of the adult cereals than 

in the children’s cereals. We can measure this spread in three ways: 

• Using overall range: The range of potassium content is larger for the adult cereals than for 

the children’s cereals. The children’s cereal set has a range of 90 (because 110 − 20 = 90), 

whereas the adult cereal set has a range of 315 (because 330 − 15 = 315). 

• Using IQR: The IQR of the adult cereal set is larger than the IQR of the children’s cereal set. 

The adult cereal set has an IQR of 80, since for that set Q1 = 80 and Q3 = 160. The children’s 

cereal set has an IQR of 30, since for that set Q1 = 35 and Q3 = 65. Notice here we use the 
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median as a measure of center. The median is marked with a red line. IQR measures spread 

about the median. 

• Using ADM: The children’s cereal data set has an ADM of 22. The adult cereal data set has an 

ADM of 55. Notice here we use the mean as a measure of center. The mean is marked with a 

blue line. ADM measures spread about the mean. 
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Based on the preceding example, we might expect the data set with the larger range to also have the larger 
ADM. This is not true, as we illustrate in the next example. 

Example 

Comparing Range and ADM 

Which data set has more variability? Our answer to this question depends on how we measure 

variability. 
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We can see that the overall range is larger for data set b. 

• Data set a: range = 100 − 0 = 100 

• Data set b: range = 200 − 0 = 200 

If we use overall range to measure spread, we will say that data set b has more variability. 

Does our answer change if we use ADM to measure spread? Yes! 

• Data set a: ADM = 41 

• Data set b: ADM = 23 

Most of the data in data set a is located away from the mean, so the ADM is large: 41. Compare this 

to data set b. Most of the data in data set b is located close to the mean, so the ADM is small: 23. 
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If we use ADM as a measure of spread, we will say that data set a has more variability. 

The ADM is a reasonable measure of spread about the mean, but there is another measure that is used much 
more often: the standard deviation (SD). The standard deviation behaves very much like the average deviation. 
So all of the work we have done on this page is useful in understanding standard deviation. We discuss standard 
deviation next. 
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STANDARD DEVIATION (2 OF 4) 

Learning OUTCOMES 

• Use mean and standard deviation to describe a distribution. 

A More Common Measure of Spread about the Mean: The 
Standard Deviation 

The standard deviation (SD) is a measurement of spread about the mean that is similar to the average 
deviation. We think of standard deviation as roughly the average distance of data from the mean. In other 
words, the standard deviation is approximately equal to the average deviation. We develop the formula for 
standard deviation in the following example. 

Example 

Calculating the Standard Deviation 

Let’s consider the same data set we used on the previous page: 2, 2, 4, 5, 6, 7, 9. We already know 

that the mean is 5. We compute the standard deviation similarly to the way we compute the 

average deviation. We begin by computing the deviation of each point from the mean, but instead 

of taking the absolute value of the differences, we square them. Here are the steps: 

1. We start by finding the differences between each value and the mean (just like before): 

2 – 5 = -3 

2 – 5 = -3 

4 – 5 = -1 
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5 – 5 = 0 

6 – 5 = 1 

7 – 5 = 2 

9 – 5 = 4 

2. We square each of the differences: 

(2 – 5)2 = (-3)2 = 9 

(2 – 5)2 = (-3)2 = 9 

(4 – 5)2 = (-1)2 = 1 

(5 – 5)2 = (0)2 = 0 

(6 – 5)2 = (1)2 = 1 

(7 – 5)2 = (2)2 = 4 

(9 – 5)2 = (4)2 = 16 

3. As before, we find the average of these squared differences. We add the squared differences 

and divide by n − 1 (the count minus 1). Note that we divide by n − 1 instead of n. (The reason 

is subtle. We do not discuss it in this course.) 

4. To scale back the value to account for the squaring we did in step 2, we take the square root 

of the value we found in step 3: 

Notice that the standard deviation is a little bit larger than the average deviation (which was 2). We 

can get a good approximation of the standard deviation by estimating the average distance from 

the mean. The shaded box on the following dotplot indicates 1 SD to the right and left of the mean. 
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Comment 

The formula for the standard deviation of a data set can be described by the following expression. However, we 
will always use technology to perform the actual computation of the standard deviation. 

The symbols in the expression are defined as follows: 

• n is the number of values in the data set (the count). 
• Recall that ∑ means to add up (compute the sum). 
•  is the mean of the data set. 
• The individual values are denoted by x. 

Note: In the formula you can see 

• the deviations from the mean . 
• the squaring of these deviations. 
• the averaging of the squared deviations: add them up (∑) and divide by (n − 1). 

Before we learn to use technology to compute the standard deviation, we practice estimating it. We can 
estimate standard deviation in the same ways we estimated ADM. Think of standard deviation as roughly equal 
to ADM, so standard deviation is roughly the average distance of data from the mean. 

Try It 

Let’s consider the same collection of cereals we worked with previously, except this time we’ll look 

at the calorie content. 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=136#h5p-68 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=136#h5p-69 
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STANDARD DEVIATION (3 OF 4) 

Learning OUTCOMES 

• Use mean and standard deviation to describe a distribution. 

What We Know So Far about the Standard Deviation 

• The standard deviation is a measure of spread. 
• The standard deviation is approximately the average distance of the data from the mean, so it is 

approximately equal to ADM. 
• Mean ± SD gives a range of typical values. 
• We will use technology to calculate the standard deviation. 

Now we incorporate the standard deviation into our description of the pattern in the distribution of a 
quantitative variable. More specifically, we use standard deviation to compare the variability of two 
distributions. 

Example 

Backpack Weight 

The following histograms show the backpack weight carried by two groups of schoolchildren. One 

is a group of first and third graders. The other is a group of fifth and seventh graders. In each 

histogram, we marked the mean and a standard deviation above the mean. 
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Following are some observations about shape, center and spread. 

Note: For easy visual comparison, we made the histogram bin widths the same. This decision made 

the histogram of pack weights for the fifth and seventh graders a “pancake.” For this distribution, a 

larger bin width will give a more accurate sense of shape. However, since our goal is to compare 

the two groups, we chose to use the same scale and bin width for the histograms. 

First and Third Graders 

• Shape: The distribution appears somewhat symmetrical with a slight skew to the right. 

• Center and spread: With the use of technology, we determined the mean is 5.8 pounds 

and the standard deviation is 2.1 pounds. 

• Typical range of values: A stardard deviation either side of the mean gives a range of 

typical values: 5.8 − 2.1 = 3.7 and 5.8 + 2.1 = 7.9. So typical first and third graders are carrying 

between 3.7 and 7.9 pounds. 

Fifth and Seventh Graders 

• Shape and deviations from the pattern (outliers): The distribution appears somewhat 

uniform with two students who appear to be outliers. 

• Center and spread: With the use of technology, we determined the mean is 14.2 pounds 
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and the standard deviation is 7.2 pounds. 

• Typical range of values: A standard deviation either side of the mean gives a range of 

typical values: 14.2 − 7.2 = 7.0 and 14.2 + 7.2 = 21.4. So typical fifth and seventh graders are 

carrying between 7.0 and 21.4 pounds. 

Here is another view of the same data. The SD hatplot marks a standard deviation above and 

below the mean, so the gray rectangle shows us the typical range of backpack weights that we 

calculated previously. 

Next we summarize our observations with a focus on comparing the two groups: 

From this analysis, we can see that the group of students in the fifth and seventh grades are 

carrying more weight on average in their backpacks. The mean weight for this group is 14.2 pounds 

compared to 5.8 pounds for the group of first and third graders. There is also more variability in 

backpack weights in the fifth- seventh-grade group. The standard deviation for this group is 7.2 

pounds, compared to 2.1 pounds for the younger students. 

If we use the standard deviation about the mean to identify typical backpack weights, we see that 

typical older students in this sample are carrying between 7 and 21.4 pounds, compared to typical 

younger students who are carrying between 3.7 and 7.9 pounds. This is consistent with what we 

might expect. 

193  |  



One plausible explanation is that as children get older, they are assigned more homework, so they 

carry more in their backpacks. But at this age, we may also see more students making independent 

decisions about how much homework they will do, so some students will carry more books home 

and others will carry fewer. 

Try It 

Consider the following two quantitative data sets: 

• Set A: The times (in minutes) of all competitors in the 1,500-meter running track-and-field 

event at the most recent Olympic Games. 

• Set B: The times (in minutes) of all competitors in the 1,500-meter running track-and-field 

event at all high school meets in the United States last year. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=139#h5p-70 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=139#h5p-71 

Can two data sets have the same mean but different standard deviations? Can two data sets have different 
means but the same standard deviation? Use the simulation to investigate these questions in the next two 
activities. 

Instructions for adding or removing data points: 

• To add a point, move the slider to the value you want, then click on the + sign. 
• To remove a point, move the slider to the value you want, then click on the – sign. 
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• To reset the simulation, click the button in the upper left corner that says Reset. 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=139 

Activity 1 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=139#h5p-72 

Activity 2 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=139#h5p-73 
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Remark: 
The examples we constructed in the preceding activity should make it clear that the mean and standard 

deviation measure independent characteristics of a data set. The mean is a measure of center, and the standard 
deviation is a measure of spread. The size of the mean does not give us information about the size of the 
standard deviation. Similarly, the size of the standard deviation does not give us information about the size of 
the mean. 
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STANDARD DEVIATION (4 OF 4) 

Learning OUTCOMES 

• Use mean and standard deviation to describe a distribution. 

Deciding Which Measurements to Use 

We now have a choice between two measurements of center and spread. We can use the median with the 
interquartile range, or we can use the mean with the standard deviation. How do we decide which 
measurements to use? 

Our next examples show that the shape of the distribution and the presence of outliers helps us answer this 
question. 

Example 

Homework Scores with an Outlier 

Here are two summaries of the same set of homework scores earned by a student: a boxplot and 

an SD hatplot. Notice that the distribution of scores has an outlier. This student has mostly high 

homework scores with one score of 0. Here are some observations about the homework data. 

• Five-number summary: low: 0 Q1: 82 Q2: 84.5 Q3: 89 high: 100 

• Median is 84.5 and IQR is 7 

• Mean = 81.8, SD = 17.6 
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The typical range of scores based on the first and third quartiles is 82 to 89. 

The typical range of scores based on Mean ± SD is 64.2 to 99.4 (Here’s how we calculated this: 81.8 

– 17.6 = 64.2, 81.8 + 17.6 = 99.4.) 

Which is the better summary of the student’s performance on homework? 

The typical range based on the mean and standard deviation is not a good summary of this 

student’s homework scores. Here we see that the outlier decreases the mean so that the mean is 

too low to be representative of this student’s typical performance. We also see that the outlier 

increases the standard deviation, which gives the impression of a wide variability in scores. This 

makes sense because the standard deviation measures the average deviation of the data from the 

mean. So a point that has a large deviation from the mean will increase the average of the 

deviations. In this example, a single score is responsible for giving the impression that the student’s 

typical homework scores are lower than they really are. 

The typical range based on the first and third quartiles gives a better summary of this student’s 

performance on homework because the outlier does not affect the quartile marks. 
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Example 

Skewed Incomes 

In this example, we look at how skewness in a data set affects the standard deviation. The 

following histogram shows the personal income of a large sample of individuals drawn from U.S. 

census data in the year 2000. Notice that it is strongly skewed to the right. This type of skewness 

is often present in data sets of variables such as income. 

Following are some summary statistics for this data: 

• Mean = $24,000, SD = $27,500 

• Median = $16,900, IQR = $28,000 
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The typical range based on the mean and standard deviation is not a good summary of the 

distribution of incomes. The small number of people with higher incomes increases the mean. The 

mean is too high to represent the large number of people making less than $20,000 a year. The 

small number of people with higher incomes also increase the standard deviation, so a small 

number of high incomes gives the misleading impression that typical incomes in the sample are 

higher than they really are. 

Notice also that Mean ± SD gives an awkward range of typical values. The left endpoint is at −3,500 

(Mean − SD = 24,000 − 27,500 = −3,500), but there are no negative values in this data set. This is 

another reason why it is better to use the IQR when measuring the spread of a skewed data set. 

Let’s take a look at the same histogram, except this time we overlay a boxplot. 
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We see that the median represents the typical income of people in this sample better than the 

mean. The small number of people with higher incomes does not impact the median or the other 

quartile marks, so the first and third quartile marks give a range of incomes that more accurately 

represent typical incomes in the sample. Notice also that this range is always within the overall 

range of the data, so we will never have the problem that we encountered earlier with the 

standard deviation. 

In a skewed distribution, the upper half and the lower half of the data have a different amount of 

spread, so no single number such as the standard deviation could describe the spread very well. We 

get a better understanding of how the values are distributed if we use the quartiles and the two 

extreme values in the five-number summary. 

These examples illustrate some general guidelines for choosing numerical summaries: 

• Use the mean and the standard deviation as measures of center and spread only for distributions that are 
reasonably symmetric with a central peak. When outliers are present, the mean and standard deviation 
are not a good choice. 

• Use the five-number summary (which gives the median, IQR, and range) for all other cases. 
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Both of these examples also highlight another important principle: Always plot the data. 
We need to use a graph to determine the shape of the distribution. By looking at the shape, we can determine 

which measures of center and spread best describe the data. 

Let’s Summarize 

• The average deviation from the mean (ADM) is a measurement of spread about the mean. More 
precisely, ADM measures the average distance of the data from the mean. In practice, ADM is not 
commonly used, but it helps us understand the standard deviation (SD). 

• The standard deviation is a measure of spread. We use it as a measure of spread when we use the mean as 
a measure of center. 

• The standard deviation is approximately the average distance of the data from the mean, so it is 
approximately equal to ADM. 

• We can use the standard deviation to define a typical range of values about the mean. We mark the mean, 
then we mark 1 SD below the mean and 1 SD above the mean. This interval is centered at the mean and 
defines typical values about the mean. We often write this interval as Mean ± SD. 

• We use technology to calculate the standard deviation. 
• Like the mean, the standard deviation is strongly affected by outliers and skew in the data. 

When choosing numerical summaries, 

• Use the mean and the standard deviation as measures of center and spread only for distributions that are 
reasonably symmetric with a central peak. When outliers are present, the mean and standard deviation 
are not a good choice. 

• Use the five-number summary (which gives the median, IQR, and range) for all other cases. 
• Always plot the data. We need to use a graph to determine the shape of the distribution. By looking at 

the shape, we can determine which measures of center and spread best describe the data. 
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PUTTING IT TOGETHER: SUMMARIZING 
DATA GRAPHICALLY AND NUMERICALLY 

Let’s Summarize 

In Summarizing Data Graphically and Numerically, we focused on describing the distribution of a 
quantitative variable. 

• To analyze the distribution of a quantitative variable, we describe the overall pattern of the data (shape, 
center, spread) and any deviations from the pattern (outliers). We use three types of graphs to analyze the 
distribution of a quantitative variable: dotplots, histograms, and boxplots. 

• We described the shape of a distribution as left-skewed, right-skewed, symmetric with a central peak 
(bell-shaped), or uniform. Not all distributions have a simple shape that fits into one of these categories. 

• The center of a distribution is a typical value that represents the group. We have two different 
measurements for determining the center of a distribution: mean and median. 

◦ The mean is the average. We calculate the mean by adding the data values and dividing by the 
number of individual data points. The mean is the fair share measure. The mean is also called the 
balancing point of a distribution. If we measure the distance between each data point and the 
mean, the distances are balanced on each side of the mean. 

◦ The median is the physical center of the data when we make an ordered list. It has the same 
number of values above it as below it. 

◦ General Guidelines for Choosing a Measure of Center 
▪ Always plot the data. We need to use a graph to determine the shape of the distribution. By 

looking at the shape, we can determine which measure of center best describes the data. 
▪ Use the mean as a measure of center only for distributions that are reasonably symmetric with 

a central peak. When outliers are present, the mean is not a good choice. 
▪ Use the median as a measure of center for all other cases. 

• The spread of a distribution is a description of how the data varies. We studied three ways to measure 
spread: range (max – min), the interquartile range (Q3 – Q1), and the standard deviation. When we use 
the median, Q1 to Q3 gives a typical range of values associated with the middle 50% of the data. When 
we use the mean, Mean ± SD gives a typical range of values. 

◦ The interquartile range (IQR) measures the variability in the middle half of the data. 
◦ Standard deviation measures roughly the average distance of data from the mean. 

205  |  



• Outliers are data points that fall outside the overall pattern of the distribution. When using the median 
and IQR to measure center and spread, we use the 1.5 * IQR interval to identify outliers. Specifically, 
points outside the interval Q1 – 1.5 * IQR to Q3 + 1.5 * IQR are labeled as outliers. 
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WHY IT MATTERS: EXAMINING 
RELATIONSHIPS: QUANTITATIVE DATA 

Why learn how to analyze data by examining the 
relationships within quantitative data? 

Before we begin Examining Relationships: Quantitative Data, let’s see how the new ideas in this module relate 
to what we learned in the previous modules, Types of Statistical Studies and Producing Data and Summarizing 
Data Graphically and Numerically. 

Recall the Big Picture: 
We begin a statistical investigation with a research question. The investigation proceeds with the following 

steps: 

• Produce Data: Determine what to measure, then collect the data. ← Types of Statistical Studies and 
Producing Data 

• Explore the Data: Analyze and summarize the data. ← Summarizing Data Graphically and 
Numerically, Examining Relationships: Quantitative Data 

• Draw a Conclusion: Use the data, probability, and statistical inference to draw a conclusion about the 
population. 

Types of Statistical Studies and Producing Data focused on methods for collecting reliable data. 
Summarizing Data Graphically and Numerically focused on summarizing and analyzing data for a 
quantitative variable. In this module, we focus on summarizing and analyzing the relationship between two 
quantitative variables. In the Big Picture of Statistics, the material in Examining Relationships: Quantitative 
Data is still part of exploratory data analysis. 
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INTRODUCTION TO SCATTERPLOTS 

What you’ll learn to do: Use a scatterplot to display the 
relationship between two quantitative variables. Describe 
the overall pattern (form, direction, and strength) and 
striking deviations from the pattern. 

When investigating relationships between two 
quantitative variables, scatterplots are a simple way to 
visually represent the spread, direction, strength of 
relationship, and potential outliers of the data. With 
larger datasets, a scatterplot can more succinctly display 
the overall pattern than when the data are presented as a 
table. This visualization can also hint at the general shape 
of the relationship (for example, increasing linear, 
decreasing linear, or non-linear curves) while also helping 
us identify any deviations from that pattern. 
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SCATTERPLOTS (1 OF 5) 

Learning OUTCOMES 

• Use a scatterplot to display the relationship between two quantitative variables. Describe the 

overall pattern (form, direction, and strength) and striking deviations from the pattern. 

Example 

Highway Signs 

A research firm conducts a study to explore the relationship between a driver’s age and the driver’s 

ability to read highway signs. The subjects are a random sample of 30 drivers between the ages of 

18 and 82. (SOURCE: JESSICA M. UTTS AND ROBERT F. HECKARD, MIND ON STATISTICS [BROOKS/COLE, 

2002]. ORIGINAL SOURCE: DATA COLLECTED BY THE LAST RESOURCE, INC., BELLFONTE, PA.) 

Because the purpose of this study is to explore the effect of age on the driver’s ability to read 

highway signs, 

• the explanatory variable is age, and 

• the response variable is the maximum distance at which the driver can read a highway sign, 

or maximum reading distance. 

Both variables are quantitative. 

Here is what the raw data look like: 
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In this data set, the individuals are the 30 drivers. For each driver, we have two values: age and 

maximum reading distance. 

To explore the relationship between age and distance, we create a graph called a scatterplot. To 

create a scatterplot, we use an ordered pair (x, y) to represent the data for each driver. The 

x-coordinate is the explanatory variable: driver’s age. The y-coordinate is the response variable: 

maximum reading distance. 

For this example, the ordered pair (18, 510) represents an 18-year-old driver who can read a 

highway sign at a maximum distance of 510 feet. We plot a point for each ordered pair. In the 

scatterplot, each driver appears as a single point. 

Generally, each point in a scatterplot represents one individual. The x-coordinate is the value of the 

explanatory variable for that individual. The y-coordinate is the value of the response variable for 

that individual. 
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Here is the completed scatterplot: 
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Try It 

Recall this dataset from a medical study. In this study researchers collected data on new mothers to 

identify variables connected to low birth weights. This scatterplot investigates the relationship 

between two quantitative variables in the study: mother’s weight prior to pregnancy and baby’s 

birth weight. 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=156#h5p-74 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=156#h5p-75 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=156#h5p-76 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=156#h5p-77 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=156#h5p-78 

Comment 

Remember: The explanatory variable is on the horizontal x-axis. The response variable is on the vertical y-axis. 
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Sometimes the variables do not have a clear explanatory–response relationship. In this case, there is no rule to 
follow. Plot the variables on either axis. 
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SCATTERPLOTS (2 OF 5) 

Learning OUTCOMES 

• Use a scatterplot to display the relationship between two quantitative variables. Describe the 

overall pattern (form, direction, and strength) and striking deviations from the pattern. 

Interpreting the Scatterplot 

How do we describe the relationship between two quantitative variables using a scatterplot? We describe the 
overall pattern and deviations from that pattern. 

This is the same way we described the distribution of one quantitative variable using a dotplot or a histogram 
in Summarizing Data Graphically and Numerically. To describe the overall pattern of the distribution of one 
quantitative variable, we describe the shape, center, and spread. We also describe deviations from the pattern 
(outliers). 
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Similarly, in a scatterplot, we describe the overall pattern with descriptions of direction, form, and strength. 
Deviations from the pattern are still called outliers. 

The direction of the relationship can be positive, negative, or neither: 

A positive (or increasing) relationship means that an increase in one of the variables is associated with an 
increase in the other. 

A negative (or decreasing) relationship means that an increase in one of the variables is associated with a decrease 
in the other. 

Not all relationships can be classified as either positive or negative. 
The form of the relationship is its general shape. To identify the form, describe the shape of the data in the 

scatterplot. In practice, forms that we commonly use have mathematical equations. We look at a few of these 
equations in this course. For now, we simply describe the shape of the pattern in the scatterplot. Here are a 
couple of forms that are quite common: 

Linear form: The data points appear scattered about a line. We use a line to summarize the pattern in the 
data. We study the equation for a line in this module. 
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Curvilinear form: The data points appear scattered about a smooth curve. We use a curve to summarize the 
pattern in the data. We study some specific types of curvilinear forms with their equations in Modules 4 and 
12. 

The strength of the relationship is a description of how closely the data follow the form of the relationship. 
Let’s look, for example, at the following two scatterplots displaying positive, linear relationships: 
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In the top scatterplot, the data points closely follow the linear pattern. This is an example of a strong 
linear relationship. In the bottom scatterplot, the data points also follow a linear pattern, but the points are 
not as close to the line. The data is more scattered about the line. This is an example of a weaker linear 
relationship.Labeling a relationship as strong or weak is not very precise. We develop a more precise way to 
measure the strength of a relationship shortly. 

Outliers are points that deviate from the pattern of the relationship. In the scatterplot below, there is one 
outlier. 

Try It 

Fill in the letter of the description that matches each scatterplot. 

Descriptions: 
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A: X = month (January = 1), Y = rainfall (inches) in Napa, CA in 2010 (Note: Napa has rain in the 

winter months and months with little to no rainfall in summer.) 

B: X = month (January = 1), Y = average temperature in Boston MA in 2010 (Note: Boston has cold 

winters and hot summers.) 

C: X = year (in five-year increments from 1970), Y = Medicare costs (in $) (Note: the yearly increase 

in Medicare costs has gotten bigger and bigger over time.) 

D: X = average temperature in Boston MA (°F), Y = average temperature in Boston MA (°C) each 

month in 2010 

E: X = chest girth (cm), Y = shoulder girth (cm) for a sample of men 

F: X = engine displacement (liters), Y = city miles per gallon for a sample of cars (Note: engine 

displacement is roughly a measure of engine size. Large engines use more gas.) 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=167#h5p-79 
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Feedback for this page’s “Try It” exercise: 

Scatterplot 1: The relationship between month of the year and rainfall in Napa is curvilinear. Rainfall decreases from January 

to June, with no rainfall for several months in summer. It begins to rain again in October and rainfall increases through the winter 

months. 

Scatterplot 2: The relationship between year and Medicare costs is positive (increasing) and curvilinear (increases get bigger over 

time). 

Scatterplot 3: The relationship between temperature measured in °F and °C is linear, positive, and VERY strong. It is the strongest 

possible relationship. This is because there is a mathematical formula relating °F and °C. 

Scatterplot 4: The relationship between engine size (X) and miles per gallon (Y) is negative. As X increases (engines get bigger), Y 

decreases (cars get fewer miles to the gallon). 
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Scatterplot 5: The relationship between month of the year and temperature in Boston is curvilinear. Temperature increases from 

January to mid-summer, peaks, then decreases through the fall. 

Scatterplot 6: The form is linear, positive, and fairly strong. If you look at men with a small chest girth (small X), they will tend to 

have smaller shoulder girth (small Y). Men with larger chest girth (large X) tend to have larger shoulder girth (large Y). 
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SCATTERPLOTS (3 OF 5) 

Learning OUTCOMES 

• Use a scatterplot to display the relationship between two quantitative variables. Describe the 

overall pattern (form, direction, and strength) and striking deviations from the pattern. 

Now we return to our previous example. We apply the ideas of direction, form, and strength to describe the 
relationship between the age of the driver and the maximum distance to read a highway sign. Here is the 
scatterplot: 

Direction: The direction of the relationship is negative. An increase in age is associated with a decrease 
in reading distance, which makes sense because older drivers tend to have diminished eyesight. So most older 
drivers can read the sign only when they are close to it. In other words, they have a shorter maximum reading 
distance. 
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Form: The form of the relationship is linear. 
Strength: The data points are fairly close to the line, so the relationship is moderately strong. Do not worry 

if you feel uncertain about describing the strength of a relationship. We mentioned earlier that descriptions of 
strength are not very precise. We develop a more precise measure of the strength shortly. 

Outliers: There are no outliers. All the data points tend to follow the linear pattern. 
CC licensed content, Shared previously 
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SCATTERPLOTS (4 OF 5) 

Learning OUTCOMES 

• Use a scatterplot to display the relationship between two quantitative variables. Describe the 

overall pattern (form, direction, and strength) and striking deviations from the pattern. 

We now look at two more examples: 

Example 

Average Length of Pregnancy 

What is the relationship between an animal’s lifespan and the length of its pregnancy? To 

investigate this question, we have data from 40 different species of animals living in captivity. We 

use average lifespan as the explanatory variable, x. The average length of pregnancy is the 

response variable, y. (Source: Allen J. Rossman and Beth L. Chance, Workshop Statistics: Discovery 

with Data and Minitab [Key College Publishing, 2001]. Original source: World Almanac and Book of 

Facts, 1993 [World Almanac, 1993].) 
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What can we learn about the relationship from the scatterplot? 

The direction of the relationship is positive. An increase in lifespan is associated with an increase in 

pregnancy length. In other words, animals that live longer tend to have longer pregnancies. The 

form of the relationship is linear. The relationship is moderately strong. 

Is there an outlier? There is a data point that deviates from the rest of the data because it has large 

x– and y-values. This is the elephant. Elephants live a long time (large x-value) and have a long 

pregnancy (large y-value). So the elephant is an outlier in the distribution of both the lifespan and 
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the pregnancy variables. But this data point follows the positive direction of the data and fits the 

linear pattern. With respect to the form and direction of the relationship between the variables, this 

point is not an outlier. 

Notice that the variation in pregnancy length is larger for animals that live longer. For example, 

animals that live 5 years have pregnancies that range from about 30 days to 120 days. The short, 

red vertical line on the left illustrates this range. Animals that live 12 years have pregnancies that 

vary more, ranging from about 60 days to over 400 days. The longer red vertical line on the right 

illustrates this range. So the relationship is stronger for animals with shorter lifespans. 

Example 

Fuel Usage 

When you drive a car, what is the relationship between the speed you drive and the amount of gas 

the car uses? In this study, engineers measured the amount of fuel (in liters) used to drive 100 

kilometers. They made these fuel measurements for a car driving at a fixed speed (in kilometers per 

hour). They then made fuel measurements for different fixed speeds. 

What can we learn about the relationship from the scatterplot? 

233  |  



The data describe a relationship that decreases, then increases, so the direction of the relationship 

is negative and then becomes positive. In other words, at slow speeds, the car uses a lot of fuel. 

The amount of fuel decreases rapidly to a low point when the speed is 60 kilometers per hour, so 

the car uses the least amount of fuel at a speed of 60 km/h. The amount of fuel increases gradually 

for speeds above 60 km/h. This forms a curvilinear relationship that is very strong. All of the data 

fit a smooth curve. 

Is there an outlier? The point (10, 21) lies above the rest of the data. With respect to speed (x), this 

point is not an outlier. The x-value does not deviate from the pattern for the other x-values in the 

data. In this study, it appears that the engineers varied the speeds by increments of 10 km/h. 

However, the y-value is much higher than the other y-values. With respect to fuel usage, this point 

is an outlier. But the point fits the overall curvilinear pattern in the data, so with respect to direction 

and form, this point is not an outlier. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=174#h5p-80 

Comment 

In Summarizing Data Graphically and Numerically, we developed a method for identifying outliers in a 
distribution of one quantitative variable. The method was the 1.5 * IQR rule. In a scatterplot, you can use this 
rule to determine if the x-value of a point is an outlier with respect to the x-values in data. Similarly, you can 
use this rule to determine if a y-value of a point is an outlier with respect to the y-values in the data. However, 
this rule does not help us identify a point that deviates from the overall pattern in the data. 

Is there a method to identify outliers that deviate from the overall pattern in a scatterplot? The answer is yes, 
but we do not discuss these techniques in this course. For now, just look at the scatterplot and see if a point 
deviates from the overall pattern. In other words, see if the point deviates from the direction and form of the 
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data. We will see later that this type of outlier can influence measures of center and spread for two quantitative 
variables. 
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Feedback for the “Try It” exercise on this page: 

As the x-values increase, the y-values also increase. 

Since the y-values increase as the x-values increase, this means that the percentage of participants who completed the survey will 

increase when higher payments (incentives) are promised. 

The data points appear scattered about a smooth curve. 

The data points closely follow the suggested curvilinear form. 

The data has a positive, strong, curvilinear pattern. The point (50, 64) follows this pattern. 
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SCATTERPLOTS (5 OF 5) 

Learning OUTCOMES 

• Use a scatterplot to display the relationship between two quantitative variables. Describe the 

overall pattern (form, direction, and strength) and striking deviations from the pattern. 

Labeling Groups in a Scatterplot 

If we graph data from two or more groups in a scatterplot, the relationship between the two quantitative 
variables can be hidden or unclear. We can use a categorical variable to label groups within the scatterplot, then 
look for patterns within each group. The relationship may be clearer within each group. 

Example 

Hot Dogs 

A study was conducted by a concerned health group in which 54 major hot dog brands were 

examined. Using this data, we explore the relationship between sodium content and calories. We 

begin by making a scatterplot with data from the three types of hot dogs: beef, poultry, and meat 

(meat is a combination of pork, beef, and poultry). 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=176#oembed-1 

Let’s Summarize 

• The relationship between two quantitative variables is visually displayed using the scatterplot, where 
each point represents an individual. We always plot the explanatory variable on the horizontal x-axis and 
the response variable on the vertical y-axis. 

• When we explore a relationship using the scatterplot, we should describe the overall pattern of the 
relationship and any deviations from that pattern. To describe the overall pattern, consider the direction, 
form, and strength of the relationship. Assessing the strength just by looking at the scatterplot can be 
problematic; using a numerical measure to determine strength is discussed later in this course. 

• Adding labels to the scatterplot that indicate different groups or categories within the data might help us 
gain more insight about the relationship we are exploring. 
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INTRODUCTION TO LINEAR 
RELATIONSHIPS 

What you’ll learn to do: Use a correlation coefficient to 
describe the direction and strength of a linear relationship. 
Recognize its limitations as a measure of the relationship 
between two quantitative variables. 

Scatterplots are an excellent way to visually inspect the 
data, but to further investigate the relationship, it would 
help to quantify some metrics about the relationship. In 
particular, we are interested in: 

• Direction: Does the response variable increase with 
the dependent variable? Or does the response 
variable decrease with the dependent variable? 

• Strength: Does the scatterplot cluster tightly around 
a line? 

• Form: Is the scatterplot evenly clustered around the line or are there regions where the scatter is more 
spread out? Does the shape of the scatterplot seem linear or curvilinear? 

CC licensed content, Shared previously 
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LINEAR RELATIONSHIPS (1 OF 4) 

Learning OUTCOMES 

• Use a correlation coefficient to describe the direction and strength of a linear relationship. 

Recognize its limitations as a measure of the relationship between two quantitative 

variables. 

Introduction 

So far, we have visualized relationships between two quantitative variables using scatterplots. We have also 
described the overall pattern of a relationship by considering its direction, form, and strength. We noted that it 
is difficult to assess the strength of a relationship just by looking at the scatterplot. In this section, we develop a 
numerical measure to assess the strength. 

We focus only on relationships that have a linear form. Linear forms are quite common and relatively simple 
to detect. More important, we have a numerical measure that can assess the strength of the linear relationship. 
We use this measure along with the scatterplot to describe the linear relationship between two quantitative 
variables. 

Even though we now focus only on linear relationships, remember that not every relationship between two 
quantitative variables has a linear form. We have already seen several examples of relationships that are not 
linear. However, the measure of strength that we are about to study can be used only with linear relationships. 
If we use this measure with nonlinear relationships, we will draw incorrect conclusions about the relationship 
between the variables. 

Let’s start with an example. Consider the following two scatterplots. 
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We can see that in both cases, the direction of the relationship is positive and the form of the relationship is 
linear. What about the strength? Recall that the strength of a relationship is a description of how closely the 
data follow its form. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=180#h5p-81 
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The scale used in a scatterplot can sometimes affect our assessment of strength, so we need to develop a 
measure for the strength of a linear relationship between two quantitative variables. 
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LINEAR RELATIONSHIPS (2 OF 4) 

Learning OUTCOMES 

• Use a correlation coefficient to describe the direction and strength of a linear relationship. 

Recognize its limitations as a measure of the relationship between two quantitative 

variables. 

The Correlation Coefficient (r) 

The numerical measure that assesses the strength of a linear relationship is called the correlation coefficient 
and is denoted by r. In this section, we 

• define r. 
• discuss the calculation of r. 
• explain how to interpret the value of r. 
• talk about some of the properties of r. 

Correlation coefficient (r) 
(Definition) 

The correlation coefficient (r) is a numeric measure that measures the strength and direction of a linear 
relationship between two quantitative variables. 

Calculation: r is calculated using the following formula: 

where n is the sample size; x is a data value for the explanatory variable;  is the mean of the x-values; 
 is the standard deviation of the x-values; similarly, for the terms involving y. To calculate r, the term 

 is calculated for each individual. These terms are added together, then the sum is divided 

by (n–1). 
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However, the calculation of r is not the focus of this course. We use a statistics package to calculate the 
correlation coefficient for us, and the emphasis of this course is on the interpretation of r’s value. 

Interpretation 

Once we obtain the value of r, its interpretation with respect to the strength of linear relationships is quite 
simple, as this walkthrough illustrates: 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=182#oembed-1 

 

Use the simulation below to investigate how the value of r relates to the direction and strength of the 
relationship between the two variables in the scatterplot. 

In the simulation, use the slider bar at the top of the simulation to change the value of the correlation 
coefficient (r) between −1 and 1. Observe the effect on the scatterplot. Click on the “Switch Sign” button to 
jump between positive and negative relationships of the same strength. 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=182 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=182#h5p-82 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=182#h5p-83 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=182#h5p-84 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=182#h5p-85 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=182#h5p-86 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=182#h5p-87 
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LINEAR RELATIONSHIPS (3 OF 4) 

Learning OUTCOMES 

• Use a correlation coefficient to describe the direction and strength of a linear relationship. 

Recognize its limitations as a measure of the relationship between two quantitative 

variables. 

Now we interpret the value of r in the context of some familiar examples. 

Example 

Highway Sign 

In a previous example, we looked at this scatterplot to investigate the relationship between the age 

of a driver and the maximum distance at which the driver can read a highway sign. Because the 

form of the relationship is linear, we can use the correlation coefficient as a measure of direction 

and strength of the linear relationship. 
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The r-value is −0.793. The r-value is negative (r < 0), which means that the linear relationship has a 

negative direction. We can see this in the scatterplot. Because r is somewhat close to −1, the 

relationship is moderately strong. 

In the context of the data, the negative correlation confirms that the maximum reading distance 

decreases with age. Because r indicates a moderately strong linear relationship, we expect that 

drivers of similar age will have some (but not a lot) of variability in their maximum reading distance. 

Example 

Biology Courses 

A biology department is interested in tracking the progress of its students from entry until 

graduation. As part of the study, the department tabulates the performance of 10 students in an 

introductory course and later in an upper-level course required for graduation. What is the 

relationship between the students’ course grades in the two courses? Here are two scatterplots of 

the same data. 
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Both scatterplots show a relationship that is positive in direction and linear in form. The strength 

appears different in the two scatterplots because of the difference in scales. This illustrates why we 

support our visual assessment of strength with a measurement of strength. We can use the 

correlation coefficient as a measure of the strength of the linear relationship. The correlation 

coefficient is r = 0.91, which is close to 1. The correlation coefficient confirms that the linear 

relationship is very strong. 

Comment 

Note that in both examples, we supplemented the scatterplot with the correlation (r). Now that we have 
the correlation, why do we still need to look at a scatterplot when examining the relationship between two 
quantitative variables? 

The correlation coefficient can be interpreted only as the measure of the strength of a linear relationship, so 
we need the scatterplot to verify that the relationship indeed looks linear. This point and its importance will be 
clearer after we examine a few properties of r. 
CC licensed content, Shared previously 
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LINEAR RELATIONSHIPS (4 OF 4) 

Learning OUTCOMES 

• Use a correlation coefficient to describe the direction and strength of a linear relationship. 

Recognize its limitations as a measure of the relationship between two quantitative 

variables. 

Properties of r 

We now discuss and illustrate several important properties of the correlation coefficient as a numeric measure 
of the strength of a linear relationship. 

1. The correlation does not change when the units of measurement of either one of the variables change. In 
other words, if we change the units of measurement of the explanatory variable and/or the response variable, it 
has no effect on the correlation (r). 

To illustrate, compare the two versions of the scatterplot of the relationship between the age of a driver and 
the maximum distance for reading a highway sign. 
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The top scatterplot displays the original data where the maximum distances are measured in feet. The 
bottom scatterplot displays the same relationship, but with maximum distances changed to meters. Notice that 
the y-values have changed, but the correlations are the same. This example illustrates that a change in units does 
not change r. This is true even if we change the units on both variables. It makes sense because a change in units 
does not change the pattern in the data. The direction, form, and strength of the relationship remain the same. 
Since r measures direction and strength of a linear relationship, the value of r remains the same. 

2. The correlation measures only the strength of a linear relationship between two variables. It ignores any 
other type of relationship, no matter how strong it is. For example, consider the relationship between the average 
fuel usage of driving a fixed distance in a car and the speed at which the car drives: 

  |  256



The data have a smooth curvilinear form. The relationship is very strong because the data follow the curve 
perfectly. 

Notice that the correlation r = −0.172 indicates a weak linear relationship. This makes sense because 
the data does not closely follow a linear form. So the correlation coefficient only gives information about 
the strength of a linear relationship. It does not give reliable information about the strength of a curvilinear 
relationship. 

This example illustrates that the correlation coefficient is useless as a measure of strength if the relationship 
is not linear. It also illustrates an important rule: Always make a scatterplot of the data before calculating 
and interpreting the meaning of r. 

Why should we make a scatterplot first? If we did not look at the scatterplot, but looked only at r, what 
mistake might we make? We might conclude that the relationship between the variables is weak (or that there 
is no relationship) because r is close to zero. But this conclusion is wrong. We have misinterpreted “r close to 
0” as an indicator of a weak relationship or no relationship rather than a weak linear relationship or no linear 
relationship. We can easily avoid this misinterpretation of r by looking at the scatterplot. 

Let’s summarize. If r is close to zero, it means that the data has a very weak linear relationship or no linear 

257  |  



relationship. When r is close to zero, it is possible that the data has a strong curvilinear relationship (as we saw 
in this example). To avoid errors, we must look at the form of the data in the scatterplot before we calculate and 
interpret r. If the form is not linear, do not use r. 

3. The correlation by itself is not enough to determine whether a relationship is linear. To see this, let’s look 
at a situation with an r-value that is close to 1 but a relationship that is not linear. Recall the study in which 
participants were paid to complete a survey. The study examined the relationship between the amount of the 
monetary incentive and the percentage of the sample who returned the survey. 

The variables have a strong curvilinear relationship, yet the correlation is r = 0.876, quite close to 1. 
Reviewing the last two examples, we see that strong curvilinear relationships can have a correlation close 

to 0 or close to 1. So the correlation alone does not tell us whether a relationship is linear. We must look at a 
scatterplot of the data. 

Always look at the data! 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=190#h5p-88 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=190#h5p-89 

4. The correlation is heavily influenced by outliers. As you will learn in the next two activities, the way the 
outlier influences the correlation depends on whether or not the outlier is consistent with the pattern of the 
linear relationship. 

Using the simulation below, let’s explore how an outlier affects the correlation. 
Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=190 

To see how an outlier affects the correlation, do the following: 

1. Fill the scatterplot with a hypothetical positive linear relationship between X and Y (by clicking on the 
graph about a dozen times starting at the lower left and going up diagonally to the top right). Pay 
attention to the correlation coefficient calculated at the top left of the simulation. (Clicking on the 
garbage can lets you start over.) 

2. Once you are satisfied with your hypothetical data, create an outlier by clicking on one of the data points 
in the upper right of the graph and dragging it down along the right side of the graph. Again, pay 
attention to what happens to the value of the correlation. 

What did this activity illustrate? This activity illustrates that the correlation decreases when the outlier 
deviates from the pattern of the relationship. By dragging a data point from the upper right to the lower right, 
you created an outlier that does not fit the positive association in the rest of the data. This decreases the strength 
of the linear relationship and causes a decrease in r. 
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In the next activity, you will see how the correlation increases when the outlier is consistent with the 
direction of the linear relationship. 

Let’s Summarize 

• A special case of the relationship between two quantitative variables is the linear relationship in which a 
straight line simply and adequately summarizes the relationship. 

• When the scatterplot displays a linear relationship, we supplement it with the correlation coefficient (r), 
which measures the strength and direction of a linear relationship between two quantitative variables. 
The correlation ranges between −1 and 1. Values near −1 indicate a strong negative linear relationship, 
values near 0 indicate a weak linear relationship, and values near 1 indicate a strong positive linear 
relationship. 

• The correlation is an appropriate numerical measure only for linear relationships and is sensitive to 
outliers. Therefore, the correlation should be used only as a supplement to a scatterplot (after we look at 
the data). 
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INTRODUCTION TO ASSOCIATION VS 
CAUSATION 

What you’ll learn to do: Distinguish between association 
and causation. Identify lurking variables that may explain 
an observed relationship. 

Just because two variables are associated does not mean 
that one variable causes changes in the other! For example, 
swimsuit sales and beach toy sales are likely associated (as 
swimsuit sales go up, one might speculate that beach toy 
sales will also go up), but it’s not necessarily the case that 
swimsuit sales cause beach toy sales. 

In order to establish evidence of causation, a statistical 
study with rigorous design considerations is needed and 
the study results should be repeatable. We briefly discuss 
design considerations and appropriate conclusions that 
may be drawn. 
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CAUSATION AND LURKING VARIABLES (1 
OF 2) 

Learning OUTCOMES 

• Distinguish between association and causation. Identify lurking variables that may explain an 

observed relationship. 

Introduction 

A common mistake people make when describing the relationship between two quantitative variables is that 
they confuse association and causation. This mistake is so common that we devote this entire section to 
clarifying the difference. 

This confusion often occurs when there is a strong relationship between the two quantitative variables. In 
the case of a linear relationship, people mistakenly interpret an r-value that is close to 1 or -1 as evidence that the 
explanatory variable causes changes in the response variable. In this case, the correct interpretation is that there 
is a statistical relationship between the variables, not a causal link. In other words, the explanatory variable 
and the response variable vary together in a predictable way. There is an association between the variables. But 
this should not be interpreted as a cause-and-effect relationship. 

Let’s look at an example. 

Example 

Fire Damage 

The scatterplot below shows the relationship between the number of firefighters sent to fires (x) 

and the amount of damage caused by fires (y) in a certain city. 

  |  264



The scatterplot shows a positive association with a somewhat strong curvilinear form. An increase 

in the number of firefighters is associated with an increase in the damage done by the fire. 

Can we conclude that the increase in firefighters causes the increase in damage? Of course not. 

A third variable is at play in the background – the seriousness of the fire – and is responsible for the 

observed relationship. More serious fires require more firefighters and also result in more damage. 

The following figure will help you visualize this situation: 
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The seriousness of the fire is a lurking variable. A lurking variable is a variable that is not 

measured in the study. It is a third variable that is neither the explanatory nor the response 

variable, but it affects your interpretation of the relationship between the explanatory and 

response variables. 

In our example, the lurking variable has an effect on both the explanatory and the response variables. This 
common effect creates the observed association between the explanatory and response variables even though 
there is no cause-and-effect link between them. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=195#h5p-90 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=195#h5p-91 
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CAUSATION AND LURKING VARIABLES (2 
OF 2) 

Learning OUTCOMES 

• Distinguish between association and causation. Identify lurking variables that may explain an 

observed relationship. 

In the next example, we investigate a subtle point about the confusion between association and causation. In 
this example, a cause-and-effect connection is logical but not justified by an observed association in a single 
study. 

Example 

Smoking and Lung Cancer 

In this data, x = cigarette consumption per capita in the United States, and y = lung cancers per 

100,000. To investigate the connection between cigarette consumption and lung cancers, the data 

is offset by 30 years because cancer takes time to develop. For example, cigarette consumption in 

1945 is paired with cancer rates for 1975. 
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In the scatterplot, we see a fairly strong positive correlation. 

Can we conclude from this data that cigarette smoking causes lung cancer? The answer is no. 

The data comes from an observational study. Recall from our previous discussions in Module 1 that 

we can draw cause-and-effect conclusions only from randomized comparative experiments. From 

this study, we can say that cigarette smoking is associated with lung cancer. We can also say that 

cigarette smoking correlates with lung cancer. We cannot say that cigarette smoking causes lung 

cancer. 

Yet the National Cancer Institute’s website states that “cigarette smoking causes many types of 

cancer, including cancers of the lung” (National Cancer Institute). 

How can this be? Did the National Cancer Institute conduct a randomized comparative experiment 

to establish this cause-and-effect relationship? Of course not. We cannot randomly assign people 

to smoke or not smoke. All of the studies linking smoking with cancer are observational studies. 

Alone, each study can show only an association. 

So is it possible to draw a causal link between cigarette consumption and cancer rates? The answer 

is yes, well sort of. In practice, researchers use criteria such as the following to provide evidence of a 

causal connection from observational studies: 

• There is a reasonable explanation for how one variable might cause the other. 

• The association is seen in repeated studies under varying conditions. 

• The effects of potential lurking variables are ruled out when we look across studies. 
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The point of the previous example is again that association does not imply causation. But researchers can 
use an observed association as the first step in building a case for causation. 

This point is subtle but important. When experiments cannot be conducted, it can be difficult and 
controversial to explain an observed association between two variables. Many of the current disputes involving 
data and statistics involve questions of causation that we cannot investigate through an experiment. Does the 
death penalty reduce violent crime? Does cell phone use cause brain tumors? Does pollution cause global 
warming? All of these questions imply a cause-and-effect relationship in situations that are complex and 
involve many interacting variables. In these situations, a single observational study cannot establish a causal 
link between two variables. But researchers can use the observed association as a first step in building a case for 
causation. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=197#h5p-92 

Let’s Summarize 

• The relationship between two quantitative variables is visually displayed using the scatterplot, where each 
point represents an individual. We always plot the explanatory variable on the horizontal axis and the 
response variable on the vertical axis. 

• When we explore a relationship using the scatterplot, we should describe the overall pattern of the 
relationship and any deviations from that pattern. To describe the overall pattern, consider the direction, 
form, and strength of the relationship. 

• Adding labels to the scatterplot that indicate different groups or categories within the data might help us 
gain more insight about the relationship we are exploring. 

• A special case of the relationship between two quantitative variables is the linear relationship. In this 
case, a straight line simply and adequately summarizes the relationship. 

• When the scatterplot displays a linear relationship, we supplement it with the correlation coefficient (r), 
which measures the strength and the direction of a linear relationship between two quantitative variables. 
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The correlation ranges between -1 and 1. Values near -1 indicate a strong negative linear relationship. 
Values near 0 can indicate a weak or no linear relationship. Values near 1 indicate a strong positive linear 
relationship. Remember, we use the correlation coefficient only after we have looked at the data and 
observed that there is a linear relationship. If you have no information about what the data actually looks 
like, then you should not use the correlation coefficient in your analysis. 

• The correlation is an appropriate numerical measure only for linear relationships, and it is sensitive to 
outliers. Therefore, the correlation should be used only as a supplement to a scatterplot (after we look at 
the data). 

• A lurking variable is a variable that is not measured in the study. It is a third variable that is neither the 
explanatory nor the response variable, but it affects your interpretation of the relationship between the 
explanatory and response variable. 

• Association does not imply causation. Do not interpret a high correlation between explanatory and 
response variables as a cause-and-effect relationship. 

• An observational study alone cannot establish a causal connection between explanatory and response 
variables. To establish a cause-and-effect relationship, researchers must conduct a comparative 
randomized experiment. In reality, it is often impossible to conduct an experiment. So observational 
studies that show an association between two variables can be used as a first step in building a case for 
causation. 
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INTRODUCTION TO LINEAR REGRESSION 

What you’ll learn to do: For a linear relationship, use the 
least squares regression line to model the pattern in the 
data and to make predictions. 

In this section, we present steps for finding the simple 
linear regression formula given a set of data. This formula 
is derived to find the line that has the smallest total 
squared error from the line to the observed data. In 
addition, we interpret the constants in a real-world 
context and explore the ways in which we can use the 
linear regression model to form predictions or good 
“guesses” for new values. 
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LINEAR REGRESSION (1 OF 4) 

Learning OUTCOMES 

• For a linear relationship, use the least squares regression line to model the pattern in the data 

and to make predictions. 

So far we have used a scatterplot to describe the relationship between two quantitative variables. We described 
the pattern in the data by describing the direction, form, and strength of the relationship. We then focused on 
linear relationships. When the relationship is linear, we used correlation (r) as a measure of the direction and 
strength of the linear relationship. 

Our focus on linear relationships continues here. We will 

• use lines to make predictions. 
• identify situations in which predictions can be misleading. 
• develop a measurement for identifying the best line to summarize the data. 
• use technology to find the best line. 
• interpret the parts of the equation of a line to make our summary of the data more precise. 

Making Predictions 

Earlier, we examined the linear relationship between the age of a driver and the maximum distance at which 
the driver can read a highway sign. Suppose we want to predict the maximum distance that a 60-year-old driver 
can read a highway sign. In the original data set, we do not have a 60-year-old driver. 

How could we make a prediction using the linear pattern in the data? 
Here again is the scatterplot of driver ages and maximum reading distances . (Note: Sign Legibility Distance 

= Max distance to read sign.) We marked 60 on the x-axis. 
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Of course, different 60-year-olds will have different maximum reading distances . We expect variability 
among individuals. But here our goal is to make a single prediction that follows the general pattern in the data. 
Our first step is to model the pattern in the data with a line. In the scatterplot, you see a red line that follows 
the pattern in the data. 

To use this line to make a prediction, we find the point on the line with an x-value of 60. Simply trace from 
60 directly up to the line. We use the y-value of this point as the predicted maximum reading distance for a 
60-year-old. Trace from this point across to the y-axis. 
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We predict that 60-year-old drivers can see the sign from a maximum distance of just under 400 feet. 
We can also use the equation for the line to make a prediction. The equation for the red line is 
Predicted distance = 576 − 3 * Age 
To predict the maximum distance for a 60-year-old, substitute Age = 60 into the equation. 
Predicted distance = 576 − 3 * (60) = 396 feet 
Shortly, we develop a measurement for identifying the best line to summarize the data. We then use 

technology to find the equation of this line. Later, in “Assessing the Fit of a Line,” we develop a method to 
measure the accuracy of the predictions from this “best” line. For now, just focus on how to use the line to 
make predictions. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=205#h5p-93 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=205#h5p-94 

Before we leave the idea of prediction, we end with the following cautionary note: 
Avoid making predictions outside the range of the data. 
Prediction for values of the explanatory variable that fall outside the range of the data is called 

extrapolation. These predictions are unreliable because we do not know if the pattern observed in the data 
continues outside the range of the data. Here is an example. 

Example 

Cricket Thermometers 

Crickets chirp at a faster rate when the weather is warm. The scatterplot shows data presented in a 

1995 issue of Outside magazine. Chirp rate is the number of chirps in 13 seconds. The temperature is 

in degrees Fahrenheit. 

There is a strong relationship between chirp rate and temperature when the chirp rate is between 

about 18 and 45. What form does the data have? This is harder to determine. A line appears to 
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summarize the data well, but we also see a curvilinear form, particularly when we pay attention to 

the first and last data points. 

Both the curve and line are good summaries of the data. Both give similar predictions for 

temperature when the chirp rate is within the range of the data (between 18 and 45). But outside 

this range, the curve and the line give very different predictions. For example, if the crickets are 

chirping at a rate of 60, the line predicts a temperature just above 95°F. The curve predicts a much 

lower temperature of about 85°F. 

Which is a better prediction? We do not know which is better because we do not know if the form 

is linear or curvilinear outside the range of the data. 

If we use our model (the line or the curve) to make predictions outside the range of the data, this is 

an example of extrapolation. We see in this example that extrapolation can give unreliable 

predictions. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=205#h5p-95 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=205#h5p-96 
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LINEAR REGRESSION (2 OF 4) 

Learning OUTCOMES 

• For a linear relationship, use the least squares regression line to model the pattern in the data 

and to make predictions. 

We continue our discussion of linear relationships with a focus on how to find the best line to summarize a 
linear pattern in data. Specifically, we do the following: 

• Develop a measurement for identifying the best line to summarize the data. 
• Use technology to find the best line. 

Let’s begin with a simple data set with only five data points. 
Which line appears to be a better summary of the linear pattern in the data? 

Let’s make some observations about how these lines relate to the data points. 

283  |  



The line on the left passes through two of the five points. The point (12, 7) is very close to the line. The 
points (8, 13) and (17, 14) are relatively far from the line. 

The line on the right does not pass through any of the points. It appears to pass through the middle of the 
distribution of the data. The points (8, 13) and (17, 14) are closer to this line than to the line on the left. But 
the other data points are farther from this line. 

Which line is the best summary of the positive linear association we see in the data? Well, we may not agree 
on this, so we need a measurement of “best fit.” 

Here’s the basic idea: The closer the line is to all of the data points, the better the line summarizes the pattern 
in the data. Notice when the line is close to the data points, it gives better predictions. A good prediction means 
the predicted y-value from the line is close to the actual y-value for the data point. 

Here are the scatterplots again. For each data point, we drew a vertical line segment from the point to the 
summary line. The length of each vertical line segment is the amount that the predicted y-value deviates from 
the actual y-value for that data point. We think of this as the error in the prediction. We want to adjust the line 
until the overall error for all points together is as small as possible. 

The most common measurement of overall error is the sum of the squares of the errors, or SSE (sum of 
squared errors). The line with the smallest SSE is called the least-squares regression line. We call this line the 
“line of best fit.” 

Here are the scatterplots again. As before, each vertical line represents the error in a prediction. For each data 
point, the squared error is equal to the area of a yellow square. The least-squares regression line is the line with 
the smallest SSE, which means it has the smallest total yellow area. 
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Using the least-squares measurement, the line on the right is the better fit. It has a smaller sum of squared 
errors. When we compare the sum of the areas of the yellow squares, the line on the left has an SSE of 57.8. 
The line on the right has a smaller SSE of 43.9. 

But is the line on the right the best fit? The answer is no. The line of best fit is the line that has the smallest 
sum of squared errors (SSE). For this data set, the line with the smallest SSE is y = 6.72 +0.26x. The SSE is 
41.79. 

Now you try it with a new data set. Use the following simulation to adjust the line. See if you can find the 
least-squares regression line. (Try to find the line that makes the SSE as small as possible.) 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=209 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=209#h5p-97 
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LINEAR REGRESSION (3 OF 4) 

Learning OUTCOMES 

• For a linear relationship, use the least squares regression line to model the pattern in the data 

and to make predictions. 

Let’s quickly revisit the list of our data analysis tools for working with linear relationships: 

• Use a scatterplot and r to describe direction and strength of the linear relationship. 
• Find the equation of the least-squares regression line to summarize the relationship. 
• Use the equation and the graph of the least-squares line to make predictions. 
• Avoid extrapolation when making predictions. 

Now we focus on the equation of a line in more detail. Our goal is to understand what the numbers in the 
equation tell us about the relationship between the explanatory variable and the response variable. 

Here are some of the equations of lines that we have used in our discussion of linear relationships: 
Predicted distance = 576 − 3 * Age 

Predicted height = 39 + 2.7 * forearm length 
Predicted monthly car insurance premium = 97 − 1.45 * years of driving experience 

Notice that the form of the equations is the same. In general, each equation has the form 
Predicted y = a + b * x 

When we find the least-squares regression line, a and b are determined by the data. The values of a and b do 
not change, so we refer to them as constants. 

In the equation of the line, the constant a is the prediction when x = 0. It is called initial value. In a graph 
of the line, a is the y-intercept. 

In the equation of the line, the constant b is the rate of change, called the slope. In a graph of the least-
squares line, b describes how the predictions change when x increases by one unit. More specifically, b describes 
the average change in the response variable when the explanatory variable increases by one unit. 

We can write the equation of the line to reflect the meaning of a and b: 
Predicted y = a + b * x 
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Predicted y-value = (initial value) + (rate of change)*x 
Predicted y-value = (y-intercept) + (slope)*x 

The constants a and b are shown in the graph of the line below. 

Algebra review 

The algebra of a line 

The general form for the equation of a line is Y = a + bX. The constants “a” and “b” can be either 

positive or negative. The constant “a” is the y-intercept where the line crosses the y-axis. The 

constant “b” is the slope. It describes the steepness of the line. In algebra we describe the slope 

as “rise over run”. The slope is the amount that Y increases (or decreases) for each 1-unit 

increase in X. 
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EXAMPLE 

1 

Consider the line . 

The intercept is 1. The slope is 1/3, and the graph of this line is, therefore: 
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EXAMPLE 

2 

Consider the line . The intercept is 1. The slope is -1/3, and the graph of this line 

is, therefore: 
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The simulation below allows you to see how changing the values of the slope and y-intercept 

changes the line. The slider on the left controls the y-intercept, a. The slider on the right 

controls the slope, b. 

Use the simulation to draw the following lines: 

Y = 3 + 0.67X 

Y = 5 – X (which can also be written Y = 5 – 1.0X) 

Y = 2X (which can also be written Y = 0 + 2X) 

Y = 5 – 2X 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=215 

Use the following graphs in the next activity to investigate the equation of lines. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=215#h5p-105 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=215#h5p-106 

Interpreting the Slope and Intercept 

The constants in the equation of a line give us important information about the relationship between the 
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predictions and x. In the next examples, we focus on how to interpret the meaning of the constants in the 
context of data. 

Example 

Highway Sign Visibility Data 

Recall that from a data set of 30 drivers, we see a strong negative linear relationship between the 

age of a driver (x) and the maximum distance (in feet) at which a driver can read a highway sign. 

The least-squares regression line is 

Predicted y-value = (starting value) + (rate of change)*x 

Predicted distance = 576 − 3 * Age 

Predicted distance = 576 + (−3 * Age) 

The value of b is −3. This means that a 1-year increase in age corresponds to a predicted 3-foot 

decrease in maximum distance at which a driver can read a sign. Another way to say this is that 

there is an average decrease of 3 feet in predicted sign visibility distance when we compare drivers 

of age x to drivers of age x + 1. 

The 576 is the predicted value when x = 0. Obviously, it does not make sense to predict a maximum 

sign visibility distance for a driver who is 0 years old. This is an example of extrapolating outside 

the range of the data. But the starting value is an important part of the least-squares equation for 

predicting distances based on age. 

The equation tells us that to predict the maximum visibility distance for a driver, start with a 

distance of 576 feet and subtract 3 feet for every year of the driver’s age. 

Example 

Body Measurements 

In the body measurement data collected from 21 female community college students, we found a 

strong positive correlation between forearm length and height. The least-squares regression line is 
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Predicted height = 39 + 2.7 * forearm length 

The value of b is 2.7. This means that a 1-inch increase in forearm length corresponds to a predicted 

2.7-inch increase in height. Another way to say this is that there is an average increase of 2.7-inches 

in predicted height when we compare women with forearm length of x to women with forearm 

length of x + 1. 

The 39 is the predicted value when x = 0. Obviously, it does not make sense to predict the height of 

a woman with a 0-inch forearm length. This is another example of extrapolating outside the range 

of the data. But 39 inches is the starting value in the least-squares equation for predicting height 

based on forearm length. 

The equation tells us that to predict the height of a woman, start with 39 inches and add 2.7 inches 

for every inch of forearm length. 

In the graph below, we see the slope b represented by a triangle. An 8-inch increase in foreman 

length corresponds to a 21.6-inch increase in predicted height. b = 21.6 / 8 = 2.7. An arrow points to 

the starting value a = 39. This is the point with x = 0. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=215#h5p-107 
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Feedback for interactive questions 

Question 1 

r = -0.95 is the r-value closest to -1. Scatterplot C has the strongest negative linear relationship. 

r = -0.73 is the negative r-value that is 2nd closest to -1. Scatterplot E has a fairly strong negative linear relationship. 

r = -0.54 is the negative r-value closest to 0. Scatterplot D has the weakest negative linear relationship. 

r = 0.45 is the positive r-value closest to 0. Scatterplot A has the weakest positive linear relationship. 

r = 0.88 is the r-value closest to 1. Scatterplot B has the strongest positive linear relationship. 

Question 2 

Here is how we determined this: When X = 0, the predicted Y is -10.5. This point must be on the line. The slope is 1.1. Look for a 

positive slope. Draw a slope triangle connecting two points on the line. Calculate the “change in Y” divided by the “change in X.” 

This ratio should be approximately 1.1. 

Here is how we determined this: When X = 0, the predicted Y is -10.5. This point must be on the line. The slope is 2.6. Look for 

a positive slope. Draw a slope triangle connecting two points on the line. Calculate the “change in Y” divided by the “change in X.” 

This ratio should be approximately 2.6. 

This is the only line with a vertical intercept of 62. 

Here is how we determined this: When X = 0, the predicted Y is 80. This point must be on the line. The slope is -1.2. Look for 

a negative slope. Draw a slope triangle connecting two points on the line. Calculate the “change in Y” divided by the “change in X.” 

This ratio should be approximately -1.2. 

Here is how we determined this: When X = 0, the predicted Y is 80. This point must be on the line. The slope is -0.2. Look for 

a negative slope. Draw a slope triangle connecting two points on the line. Calculate the “change in Y” divided by the “change in X.” 

This ratio should be approximately -0.2. 

  |  296

http://oli.cmu.edu/
https://creativecommons.org/licenses/by/4.0


LINEAR REGRESSION (4 OF 4) 
297  |  LINEAR REGRESSION (4 OF 4)



LINEAR REGRESSION (4 OF 4) 

Learning OUTCOMES 

• For a linear relationship, use the least squares regression line to model the pattern in the data 

and to make predictions. 

In the previous activity we used technology to find the least-squares regression line from the data values. 
We can also find the equation for the least-squares regression line from summary statistics for x and y and 

the correlation. 
If we know the mean and standard deviation for x and y, along with the correlation (r), we can calculate the 

slope b and the starting value a with the following formulas: 

 and 

As before, the equation of the linear regression line is 
Predicted y = a + b * x 

Example: Highway Sign Visibility 

We will now find the equation of the least-squares regression line using the output from a 

statistics package. 
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• The slope of the line is 

• The intercept of the line is a = 423 – (-3 * 51) = 576 and therefore the least-squares 

regression line for this example is Predicted distance = 576 + (-3 * Age), which can also be 

written as Predicted distance = 576 – 3 * Age 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=217#h5p-108 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

299  |  

https://pressbooks.cuny.edu/conceptsinstatistics/?p=217#h5p-108


here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=217#h5p-109 

Now you know how to calculate the least-squares regression line from the correlation and the mean and 
standard deviation of x and y. But what do these formulas tell us about the least-squares line? 

We know that the intercept a is the predicted value when x = 0. 
The formula  tells us that the we can find the intercept using the point: . 
This is interesting because it says that every least-squares regression line contains this point. In other words, 

the least-squares regression line goes through the mean of x and the mean of y. 
We also know that the slope of the least-squares regression line is the average change in the predicted 

response when the explanatory variable increases by 1 unit. 
The slope formula 

tells us that the slope is related to the correlation in this way: when x increases an x standard deviation, the 
predicted y-value does not change by a y standard deviation. Instead, the predicted y-value changes by less than 
a y standard deviation. The change is a fraction of a y standard deviation, and that fraction is r. Another way 
to say this is that when x increases by a standard deviation in x, the average change in the predicted response is 
a fractional change of r standard deviations in y. 

It is not surprising that slope and correlation are connected. We already know that when a linear relationship 
is positive, the correlation and the slope are positive. Similarly, when a linear relationship is negative, the 
correlation and slope are both negative. But now we understand this connection more precisely. 

Let’s Summarize 

• The line that best summarizes a linear relationship is the least-squares regression line. The least-squares 
line is the best fit for the data because it gives the best predictions with the least amount of overall error. 
The most common measurement of overall error is the sum of the squares of the errors (SSE). The least-
squares line is the line with the smallest SSE. 

• We use the least-squares regression line to predict the value of the response variable from a value of the 
explanatory variable. 
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• Prediction for values of the explanatory variable that fall outside the range of the data is called 
extrapolation. These predictions are unreliable because we do not know if the pattern observed in the 
data continues outside the range of the data. Avoid making predictions outside the range of the data. 

• The slope of the least-squares regression line is the average change in the predicted values of the response 
variable when the explanatory variable increases by 1 unit. 

• We have two methods for finding the equation of the least-squares regression line: 

Predicted y = a + b * x 
Method 1: We use technology to find the equation of the least-squares regression line: 

Predicted y = a + b * x 
Method 2: We use summary statistics for x and y and the correlation. In this method we can calculate the 

slope b and the y-intercept a using the following: 

, 

CC licensed content, Shared previously 
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Feedback for interactive elements 

Question 2 

Advice #1: Always look at a scatterplot of the data. We have to know the form is linear BEFORE we make predictions using linear 

regression. 

Advice #2: The relationship is not necessarily linear. The last sentence, however, is correct. The final exam score could vary quite a 

bit from the prediction. 
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INTRODUCTION TO ASSESSING THE FIT OF 
A LINE 

What you’ll learn to do: Use residuals, standard error, and 
r2 to assess the fit of a linear model. 

Graphing the regression line with the scatterplot gives a 
visual depiction of how well the regression line fits the 
data.  To further hone in on assessing the fit of our 
regression line to the data, in this section we present: 

• Residual plots. 
• The correlation coefficient r gives us a numerical 

way to measure this fit. 
• Interpreting the square of the correlation coefficient 

r2 . 
• Interpreting the standard error se. 

CC licensed content, Shared previously 
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ASSESSING THE FIT OF A LINE (1 OF 4) 

Learning OUTCOMES 

• Use residuals, standard error, and r2 to assess the fit of a linear model. 

Introduction 

Let’s take a moment to summarize what we have done up to this point in Examining Relationships: 
Quantitative Data. Our goal from the beginning was to examine the relationship between two quantitative 
variables. We started by looking at scatterplots to see if we could see any pattern between the explanatory 
and response variables. We focused early in the course on identifying those cases that were linear in form. At 
the same time, we assessed how strong the linear relationship was on the basis of visual inspection. As is our 
usual strategy, we turned from graphs to numeric measures, and in particular, we developed the correlation 
coefficient, r, as a measure of the strength of the linear relationship we observed in the graph. 

Once we established that there was a linear relationship between explanatory and response variables, the 
next step was to find a line that fit the data: the best-fit line. Here we used the least-squares method to find the 
regression line. Finally, we used the equation of the regression line to predict the value of the response variable 
for a given value of the explanatory variable. 

How Good Is the Best-Fit Line? 

Now that we have a mathematical model (the least-squares regression line) that we can use to make predictions, 
we want to know: How good are these predictions, and how can we measure the error in a prediction? 
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Example 

Highway Sign Visibility 

Let’s begin our investigation by predicting the maximum distance that an 18-year-old driver can 

read a highway sign and then determining the error in our prediction. 

We use the regression line equation: 

Distance = 576 + (–3 * Age) 

To predict the distance for an 18-year-old driver, we plug Age = 18 into the equation. 

Predicted distance = 576 + (–3 * 18) = 522 

Our prediction is that 522 feet is the maximum distance at which an 18-year-old driver can read a 

highway sign. Now let’s compare our prediction to the actual data for the 18-year-old driver: (18, 

510). 

The error in our prediction is 510 – 522 = –12. 

This tells us that the actual distance for the 18-year-old driver is 12 feet closer than the prediction. 

In other words, our prediction is too large. It overestimates the actual distance by 12 feet. 

So in general, we have Observed data value – Predicted value = Error. 
If we use (x, y) to represent a typical data point and ŷ to represent the predicted value (obtained by using the 

regression equation), then we have 
observed  predicted  error 

 error 

Try It 

Using this table showing “observed” and “predicted” distances for some drivers, find the following: 

  |  306



https://assessments.lumenlearning.com/assessments/3497 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=222#h5p-110 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=222#h5p-111 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=222#h5p-112 

Now let’s look at the error from a different perspective. We can think of the error as a way to adjust the 
prediction to match the data value. 

From this point of view, we rewrite  error as  error. 
This last equation says that the observed value is the predicted value plus the error. In other words, we can 

think of the error as the amount that we have to add to the prediction to get the observed value. From this 
point of view, the error can be thought of as a correction term. If the error is positive, it means the prediction is 
too small (the prediction underestimates the actual y-value). If the error is negative, it means the prediction is 
too large (the prediction overestimates the actual y-value). 
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The prediction error is also called a residual. So another way to express the previous equation is 
 residual 

In our next example, we look at prediction error from this point of view. 

Example 

Biology Courses 

A biology department tracks the progress of students in its program. Grades in the introductory 

biology course have a strong linear relationship with grades in the upper-level biology courses (r = 

0.91). 

The least-squares regression equation is 

Upper course grade = −8.9 + (1.05 * Intro course grade) 

Let’s look at the predicted upper course grade for a student who makes a 75% in the introductory 

biology course. 

Upper course grade = −8.9 + (1.05 * 75) = 69.85 ≈ 70 

The regression line predicts that this student will make a 70% in the upper-level biology course. 

The actual grade in the upper-level course for this student is 63%. The prediction is too high: it 

overestimates the data. To match the data value, we would need to subtract 7 from the prediction, 

so the error is −7. 
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In the scatterplot, notice that the regression line lies above the point (75, 63). Visually, we can see 

that the prediction is too high. This reinforces our previous observation that the prediction 

overestimates the data value. We would have to adjust the prediction downward to match the 

data value. Viewing the error as a correction term, we see the correction has to be negative. 

Notice that when a point is close to the regression line, the prediction is close to the actual upper 

course grade, so the error is small. Another way to say this is that points close to the regression line 

have a small residual. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=222#h5p-113 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=222#h5p-114 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=222#h5p-115 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=222#h5p-116 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=222#h5p-117 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=222#h5p-118 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=222#h5p-119 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=222#h5p-120 
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Feedback for interactive questions 

Question 1 

The error = observed – predicted = 360 – 330, which is positive. 

The error is positive. Since the error is observed value – predicted value, a positive error tells us that the predicted value is less than 

the observed value. 

Since the predicted value is less than the observed value, the prediction is an underestimate. 

Question 2 

The predicted value of 80.35% is less than the observed value of 84%. 

The predicted value being less than the observed value means that the prediction is an underestimate. 

The predicted value is less than the observed value, so we would have to move it upward to match the observed value. 

The fact that we would have to move the predicted value upward to match the observed value is what tells us that the error in the 

prediction is positive. 
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ASSESSING THE FIT OF A LINE (2 OF 4) 

Learning OUTCOMES 

• Use residuals, standard error, and r2 to assess the fit of a linear model. 

Introduction 

Now we move from calculating the residual for an individual data point to creating a graph of the residuals for 
all the data points. We use residual plots to determine if the linear model fits the data well. 

Residual Plots 

The graph below shows a scatterplot and the regression line for a set of 10 points. The blue points represent 
our original data set, that is, our observed values. The red points, lying directly on the regression line, are the 
predicted values. 

The vertical arrows from the predicted to observed values represent the residuals. The up arrows correspond 
to positive residuals, and the down arrows correspond to negative residuals. 

Now consider the following pair of graphs. The top graph is a copy of the graph we looked at above. In the 
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graph below, we plotted the values of the residuals on their own. (The explanatory variable is still plotted on 
the horizontal axis, though it is not indicated this here.) This is called a residual plot. 

In the residual plot, each point with a value greater than zero corresponds to a data point in the original data 
set where the observed value is greater than the predicted value. Similarly, negative values correspond to data 
points where the observed value is less than the predicted value. 

What are we looking for in a residual plot? 
We use residual plots to determine if a linear model is appropriate. In particular, we look for any unexpected 

patterns in the residuals that may suggest that the data is not linear in form. 
To help us identify an unexpected pattern, we start by looking at what we expect to see in a residual plot when 

the form is linear. 
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Example 

No Pattern in Residual Plot 

Consider the pair of graphs below. Here we have a scatterplot for a data set consisting of 400 

observations. The regression line is shown in the scatterplot. The residual plot is below the 

scatterplot. 

In this example, the line in the scatterplot is a good summary of the positive linear pattern in the 

data. Notice that the points in the residual plot seem to be randomly scattered. As we examine the 

residuals from left to right, they don’t appear to follow a particular path, nor does the cloud of 

points widen or narrow in any systematic way. We see no particular pattern. Thus, in the ideal case, 

when a linear model is really a good fit, we expect to see no pattern in the residual plot. 
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Our general principle when looking at residual plots, then, is that a residual plot with no pattern is good 
because it suggests that our use of a linear model is appropriate. 

However, we must be flexible in applying this principle because what we see usually lies somewhere between 
the extremes of no pattern and a clear pattern. Let’s look at some specific examples. 

Example 

Patterns in Residual Plots 

At first glance, the scatterplot appears to show a strong linear relationship. The correlation is r = 

0.84. However, when we examine the residual plot, we see a clear U-shaped pattern. Looking back 

at the scatterplot, this movement of the data points above, below and then above the regression 

line is noticeable. The residual plot, particularly when graphed at a finer scale, helps us to focus on 

this deviation from linearity. 
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The pattern in the residual plot suggests that our linear model may not be appropriate because the 

model predictions will be too high for values in the middle of the range of the explanatory variable 

and too low for values at the two ends of that range. A model with a curvilinear form may be more 

appropriate. 

Example 

Patterns in Residual Plots 2 

This scatterplot is based on datapoints that have a correlation of r = 0.75. In the residual plot, we 

see that residuals grow steadily larger in absolute value as we move from left to right. In other 

words, as we move from left to right, the observed values deviate more and more from the 

predicted values. Again, we have chosen a smaller vertical scale for the residual plot to help amplify 

the pattern to make it easier to see. 
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The pattern in the residual plot suggests that predictions based on the linear regression line will 

result in greater error as we move from left to right through the range of the explanatory variable. 

Example 

Highway Sign Visibility 

Let’s return now to our original example and take a look at what the residual plot tell us about the 

appropriateness of applying a linear model to this data. 
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Note that the residuals are fairly randomly dispersed. However, they seem to be a bit more spread 

out on the left and right than they are in the middle. As we look at higher ages, there seems to be 

greater variation in the residuals, which suggests that we may want to be more cautious if we are 

trying to predict distances for older drivers. And the risks associated with extrapolation beyond the 

range of the data seem to be even greater here. In this case, we may still use this linear model but 

condition the use of it on our analysis of the residual plot. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=230#h5p-121 

Here again are four scatterplots with regression lines shown and four corresponding residual plots. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=230#h5p-122 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=230#h5p-123 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=230#h5p-124 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=230#h5p-125 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 

Feedback on interactive questions 

Question 1 

Residual Plot D shows a pattern that fans out as we move left-to-right, which is consistent with Scatterplot I where points on the 

right side of the graph lie farther away from the line than points on the left side of the graph. 

Residual Plot A is rectangular shaped, which is consistent with Scatterplot II where the distances between the points and the line 

remain fairly steady as we move left-to-right and have a maximum distance of about 15 units. 

Residual Plot B shows a curved pattern from negative to positive and back to negative, which consistent with Scatterplot III where 

the points go from below the line to above the line and back to below as we move left-to-right. 

Residual Plot C is rectangular shaped, which is consistent with Scatterplot IV where the distances between the points and the line 

remain fairly steady as we move left-to-right and have a maximum distance of about 5-6 units. 

  |  322

https://pressbooks.cuny.edu/conceptsinstatistics/?p=230#h5p-125
http://oli.cmu.edu/
https://creativecommons.org/licenses/by/4.0


ASSESSING THE FIT OF A LINE (3 OF 4) 
323  |  ASSESSING THE FIT OF A LINE (3 OF 4)



ASSESSING THE FIT OF A LINE (3 OF 4) 

Learning OUTCOMES 

• Use residuals, standard error, and r2 to assess the fit of a linear model. 

Introduction 

Here we continue our discussion of the question, How good is the best-fit line? 
Let’s summarize what we have done so far to address this question. We began by looking at how the 

predictions from the least-squares regression line compare to observed data. We defined a residual to be the 
amount of error in a prediction. Next, we created residual plots. A residual plot with no pattern reassures us 
that our linear model is a good summary of the data. 

But how do we know if the explanatory variable we chose is really the best predictor of the response variable? 
The regression line does not take into account other variables that might also be good predictors. So let’s 

investigate the question, What proportion of the variation in the response variable does our regression line 
explain? 

We begin our investigation with a scatterplot of the daily high temperature (°F) in New York City from 
January 1 to June 1. We have 4 years of data (2002, 2003, 2005, and 2006). The least-squares regression line 
has the equation y = 36.29 + 0.25x, where x is the number of days after January 1. Therefore, January 1 
corresponds to x = 0, and June 1 corresponds to x = 151. 
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Two things stand out as we look at this picture. First, we see a clear, positive linear relationship tracked by the 
regression line. As the days progress, there is an associated increase in temperature. Second, we see a substantial 
scattering of points around the regression line. We are looking at 4 years of data, and we see a lot of variation 
in temperature, so the day of the year only partially explains the increase in temperature. Other variables also 
influence the temperature, but the line accounts only for the relationship between the day of the year and 
temperature. 

Now we ask the question, Given the natural variation in temperature, what proportion of that variation does 
our linear model explain? 

The answer, which is surprisingly easy to calculate, is just the square of the correlation coefficient. 
The value of r2 is the proportion of the variation in the response variable that is explained by the 

least-squares regression line. 

In the present case, we have r = 0.73; therefore, . And so we 

say that our linear regression model explains 53% of the total variation in the response variable. Consequently, 
47% of the total variation remains unexplained. 
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Example 

Highway Sign Visibility 

Recall that the least-squares regression line is Distance = 576 − 3 * Age. The correlation coefficient 

for the highway sign data set is −0.793, so r2 = (−0.793)2 = 0.63. 

Our linear model uses age to predict maximum distance at which a driver can read a highway sign. 

Other variables may also influence reading distance. We can say the linear relationship between 

age and maximum reading distance accounts for 63% of the variation in maximum reading 

distance. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=233#h5p-126 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=233#h5p-127 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=233#h5p-128 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 

Feedback for interactive question 

The r2 value is not a measure of how often we expect the model to be correct. 

The r2 value measures the proportion of the variation in the daughters’ BMI measurements that is explained by our model. 

The r2 value (which in this case is about 25%) measures the proportion of the variation in the response variable explained by the 

model. 
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Since the model, which is based on the mothers’ BMI values, accounts for 25% of the variation in the daughters’ BMI readings, it 

follows that the rest of that variation is accounted for by other variables. 
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ASSESSING THE FIT OF A LINE (4 OF 4) 

Learning OUTCOMES 

• Use residuals, standard error, and r2 to assess the fit of a linear model. 

Introduction 

Our final investigation into assessing the fit of the regression line focuses on typical error in the predictions. 
Previously, we calculated the error in a single prediction by calculating 

Residual = Observed value − Predicted value 
But we use the regression line to make predictions even when we do not have an observed value, so we need 

a method for using all of the residuals to compute a typical amount of error. 
We ask the question, How do we measure the typical amount of error for predictions from the regression line? 
The most common measure of the size of the typical error is the standard error of the regression, which 

is represented by se. It is calculated using the following formula: 

where SSE stands for the sum of the squared errors. 
Finding the standard error of the regression is similar to finding the standard deviation of a distribution 

of data points from a single quantitative variable. In Summarizing Data Graphically and Numerically, we 
learned that the standard deviation is roughly a measure of average distance about the mean. Here the standard 
error is roughly a measure of the average distance of the points about the regression line. 

Let’s return to our example where age is used to predict the maximum distance for reading highway signs. 
The residual plot for the highway sign data set is shown below. We can visualize the SSE in the formula as 

simply the sum of the squares of all of the vertical (residual) line segments. After dividing by n − 2, we have the 
average squared residual. Taking the square root then gives us a measure of the average size of the residuals. 
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In the case of the highway sign data, the value of se is 51.35. In the figure below, we added horizontal lines at 
y = 51.35 and y = −51.35, so the red line represents the typical size of the error. 

Comment: When we mark the se on this residual plot, errors that fall outside of this range are larger than 
average. We see again that most of the errors that exceed ±51.35 are on the right. This illustrates that predictions 
of maximum reading distance for older drivers have larger error. 

Note: Most statistics software computes r and r2 and se. Therefore, our focus is not on calculating but on 
understanding and interpreting. 

Now let’s apply the standard error of the regression as a measurement of typical error. 
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Example 

Highway Sign Visibility 

Let’s take another look at the prediction we made earlier using the regression line equation: 

Distance = 576 + (−3 * Age) 

In a previous example, we predicted the maximum distance that a 60-year-old driver can read a 

highway sign. We plugged Age = 60 into the equation and found that 

Predicted distance = 576 + (−3 * 60) = 396 

The question we now ask is, How good is this prediction? 

Unfortunately, there is no 60-year-old driver in the original data set of 30 drivers, so we cannot 

calculate the residual. Instead, we use the se as a measurement of typical error. 

Technology gives se = 51.35. 

So how good is the prediction for the 60-year-old driver? Based on the se for this data, we 

estimate that our prediction of 396 feet is off by ±51 feet. 

Intro grade(%) Upper grade(%) Predictions Error (Residual) Error Squared 

Student 1 65 58 59.1 −1.1 1.21 

Student 2 71 63 65.4 −2.4 5.76 

Student 3 72 67 66.4 0.6 0.36 

Student 4 72 77 66.4 10.6 112.36 

Student 5 75 63 69.6 −6.6 43.56 

Student 6 83 72 77.9 −5.9 34.81 

Student 7 85 84 80 4 16 

Student 8 88 83 83.2 −0.2 0.04 

Student 9 94 89 89.5 −0.5 0.25 

Student 10 96 93 91.5 1.5 2.25 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=236#h5p-129 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=236#h5p-130 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=236#h5p-131 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=236#h5p-132 

333  |  

https://pressbooks.cuny.edu/conceptsinstatistics/?p=236#h5p-129
https://pressbooks.cuny.edu/conceptsinstatistics/?p=236#h5p-130
https://pressbooks.cuny.edu/conceptsinstatistics/?p=236#h5p-131
https://pressbooks.cuny.edu/conceptsinstatistics/?p=236#h5p-132


Let’s Summarize 

• When we use a regression line to make predictions, there is error in the prediction. We calculate this 
error as Observed data value − Predicted value. A residual is another name for the prediction error. 

• We use residual plots to determine whether a linear model is a good summary of the relationship 
between the explanatory and response variables. In particular, we look for any unexpected patterns in the 
residuals that may suggest the data is not linear in form. 

• We have two numeric measures to help us judge how well the regression line models the data. 
◦ The square of the correlation coefficient, r2, is the proportion of the variation in the response 

variable that is explained by the least-squares regression line. 
◦ The standard error of the regression, se, gives a typical prediction error based on all of the data. It 

roughly measures the average distance of the data from the regression line. In this way, it is similar 
to the standard deviation, which roughly measures average distance from the mean. 
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PUTTING IT TOGETHER: EXAMINING 
RELATIONSHIPS: QUANTITATIVE DATA 

Let’s Summarize 

• We use a scatterplot to graph the relationship between two quantitative variables. In a scatterplot, each 
dot represents an individual. We always plot the explanatory variable on the horizontal x-axis. 

• When we explore a relationship between two quantitative variables using a scatterplot, we describe the 
overall pattern (direction, form, and strength) and deviations from the pattern (outliers). 

• When the form of a relationship is linear, we use the correlation coefficient, r, to measure the strength 
and direction of the linear relationship. The correlation ranges between −1 an 1. If the pattern is linear, 
an r-value near −1 indicates a strong negative linear relationship and an r-value near +1 indicates a strong 
positive linear relationship. Following are some cautions about interpreting correlation: 

◦ Always make a scatterplot before interpreting r. Correlation is affected by outliers and should 
be used only when the pattern in the data is linear. 

◦ Association does not imply causation. Do not interpret a high correlation between explanatory 
and response variables as a cause-and-effect relationship. 

◦ Beware of lurking variables that may be explaining the relationship seen in the data. 
• The line that best summarizes a linear relationship is the least-squares regression line. The least-squares 

line is the best fit for the data because it gives the best predictions with the least amount of error. The 
most common measurement of overall error is the sum of the squares of the errors, SSE. The least-
squares line is the line with the smallest SSE. 

• We use the least-squares regression line to predict the value of the response variable from a value of the 
explanatory variable. Avoid making predictions outside the range of the data. (This is called 
extrapolation.) 

• We have two methods for finding the equation of the least-squares regression line: Predicted y = a + b * x 
◦ We use technology to find the equation of the least-squares regression line: Predicted y = a + b * x 
◦ We use summary statistics for x and y and the correlation. Using this method, we can calculate the 

slope b and the y-intercept a using the following: 
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• The slope of the least-squares regression line is the average change in the predicted values when the 
explanatory variable increases by 1 unit. 

• When we use a regression line to make predictions, there is error in the prediction. We calculate this 
error as Observed value − Predicted value. This prediction error is also called a residual. 

• We use residual plots to determine whether a linear model is a good summary of the relationship 
between the explanatory and response variables. In particular, we look for any unexpected patterns in the 
residuals that may suggest that the data is not linear in form. 

• We have two numeric measures to help us judge how well the regression line models the data: 
◦ The square of the correlation, r2 , is the proportion of the variation in the response variable that is 

explained by the least-squares regression line. 
◦ The standard error of the regression, se , gives a typical prediction error based on all of the data. It 

roughly measures the average distance of the data from the regression line. In this way, it is similar 
to the standard deviation, which roughly measures average distance from the mean. 
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WHY IT MATTERS: NONLINEAR MODELS 

Why learn about nonlinear relationships and how they are 
modeled? 

Before we begin Nonlinear Models, let’s see how the new ideas in this module relate to what we learned in 
the previous modules, Types of Statistical Studies and Producing Data, Summarizing Data Graphically and 
Numerically, and Examining Relationships: Quantitative Data. 

Recall the Big Picture: 
We begin a statistical investigation with a research question. The investigation proceeds with the following 

steps: 

• Produce Data: Determine what to measure, then collect the data. ← Types of Statistical Studies and 
Producing Data 

• Explore the Data: Analyze and summarize the data. ← Summarizing Data Graphically and 
Numerically, Examining Relationships: Quantitative Data, Nonlinear Models 

• Draw a Conclusion: Use the data, probability and statistical inference to draw a conclusion about the 
population. 

Types of Statistical Studies and Producing Data focused on methods for collecting reliable data. 
Summarizing Data Graphically and Numerically focused on summarizing and analyzing data for a 
quantitative variable. Examining Relationships: Quantitative Data focused on linear relationships between 
two quantitative variables. In Nonlinear Models, we focus on nonlinear relationships between two quantitative 
variables. In the Big Picture of Statistics, the material in this module is still part of exploratory data analysis. 
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INTRODUCTION TO EXPONENTIAL 
RELATIONSHIPS 

What you’ll learn to do: Use an exponential model (when 
appropriate) to describe the relationship between two 
quantitative variables. Interpret the model in context. 

A common nonlinear model that occurs in real life is an exponential model, which is characterized by having a 
constant factor (or multiplier) for each constant increase in the dependent variable.  Visually, the scatterplot of 
an exponential relationship should roughly follow a curve of one of these two shapes: 
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EXPONENTIAL RELATIONSHIPS (1 OF 6) 

Learning OUTCOMES 

• Use an exponential model (when appropriate) to describe the relationship between two 

quantitative variables. Interpret the model in context. 

In our first example of exponential relationships, we investigate a nonlinear model for growth in a population 
over time. 

345  |  



Example 

The Return of the Bald Eagle 

During the mid-20th century, the population of bald eagles in the lower 48 states declined 

substantially. A highly toxic pesticide, DDT, was the main cause of the decline. DDT causes damage 

to bird egg shells. By 1963, bald eagles were in danger of complete extinction. Only 417 pairs of bald 

eagles remained. In 1967, the bald eagle became an official endangered species. Then in 1972, the 

EPA banned the use of DDT in the United States. The impact of the ban was a dramatic turnaround 

in the fate of the bald eagle. 

Here is the data. Note that in the table, we defined t, our explanatory variable, to be Years after 

1950. The response variable is the number of bald eagle pairs that are mating. 
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Bald Eagle Mating Pairs 

Year t = years after 1950 Eagle Pairs 

1963 13 417 

1974 24 791 

1981 31 1188 

1982 32 1480 

1984 34 1757 

1986 36 1875 

1987 37 2238 

1988 38 2475 

1989 39 2680 

1990 40 3035 

1991 41 3399 

1992 42 3749 

1993 43 4015 

1994 44 4449 

1995 45 4712 

1996 46 5094 

1997 47 5295 

1998 48 5748 

1999 49 6104 

2000 50 6471 

Our goal is to find an equation to model this relationship. 

Here is a scatterplot of the data. We can see that the relationship appears somewhat linear, 

particularly for years after 1980 (t = 30). The correlation coefficient for this data set is high, r = 

0.914. 
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The least squares regression line is Predicted eagle pairs = −3,878.11 + 185.4t. Below is a scatterplot 

of the data with the least-squares regression line and the residual plot. 
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We see a clear pattern in the residuals, suggesting that a linear model does not capture patterns in 

the data. 

Note: This is a reminder that a large r-value does not guarantee that a linear model is a good fit. 

Conclusion: The data set for eagle pairs is clearly nonlinear. We need a better model. 

In the scatterplot below, we fit an exponential model to the data. Notice how well this model 

describes the relationship between the variables. There is very little scatter about the exponential 

curve. There is a strong, positive exponential relationship between these variables. 
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The equation of the exponential model is Predicted eagle pairs = 121 (1.083)t. 

Note: In this equation, the t-variable is an exponent. Sometimes you will see this written with the 

caret symbol: ^. So Predicted y = 121 (1.083)t and Predicted y = 121(1.083) ^ t mean the same thing. 

Now we use the exponential model to make predictions about the number of bald eagle mating 

pairs. We also compare the predictions from the exponential model to the linear model. Because 

there is a strong exponential relationship and a weaker linear relationship in the data, we expect 

the predictions from the exponential model to be better. 

In 1963 (t = 13), there were 417 mating pairs. 

• According to the linear model: Predicted eagle pairs = –3,878.11 + 185.4 (13) = (–1,468). 

Obviously, a negative value does not make sense for a count of eagle pairs. 

• According to the exponential model: Predicted eagle pairs = 121 (1.083)13 = 341. So the 

exponential model underestimates by 417 – 341 = 76 mating pairs. But this is a much better 

prediction than we got from the linear model. 

In 2000 (t = 50), there were 6,471 mating pairs. 

• According to the linear model: Predicted eagle pairs = –3,878.11 + 185.4 (50) = 5,392. So the 

linear model underestimates by 6,471 – 5392 = 1,079 mating pairs. 
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• According to the exponential model: Predicted eagle pairs = 121 (1.083)50 = 6,519. So the 

exponential model overestimates by 6,591 – 6,471 = 48 mating pairs. This is a much better 

prediction than we got from the linear model. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=248#h5p-199 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=248#h5p-200 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=248#h5p-201 
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EXPONENTIAL RELATIONSHIPS (2 OF 6) 

Learning OUTCOMES 

• Use an exponential model (when appropriate) to describe the relationship between two 

quantitative variables. Interpret the model in context. 

Now we investigate what the numbers in the exponential model tell us. 

Example 

Understanding the Numbers in the Exponential Model 

Our goal in this example is to understand the meaning of the numbers 121 and 1.083 in the 

exponential model for predicting the number of eagle mating pairs. 

Predicted eagle pairs = 121 (1.083)t 

The 121 is the initial value for the exponential model. It is the predicted value for y when t = 0. It is 

also the y-intercept, where the exponential model crosses the y-axis. 

• To see this, plug t = 0 into the exponential model: Predicted eagle pairs = 121 (1.083)0 = 121 (1) 

= 121. 

• Interpretation in context: When t = 0, the year is 1950. In 1950, the number of eagle mating 

pairs is predicted to be 121. 

Note: A number with an exponent of 0 is equal to 1. For example, 20 = 1 and 1.51200 = 1. (This is not 

true for 0: 00 is not defined.) 

Now let’s investigate the meaning of 1.083 in the context of eagle mating pairs. 

For 1951, when t = 1, the model predicts  pairs of eagles that are 

mating. 
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For 1952, when t = 2, there are  pairs. 

We can also view the calculation for t = 2 as repeated multiplication by 1.083: 

 

Note: From this viewpoint, we find the estimated number of mating pairs for 1952 by multiplying 

the estimated 131 pairs from the previous year by 1.083. 

Here is another example: For 1953, when t = 3, we can rewrite (1.083)3 as repeated multiplication: 

(1.083)(1.083)(1.083). The exponent 3 tells us to multiply the initial value 121 by 1.083 three times. 

 

Note: We can also view this process as multiplying the estimated 142 eagle pairs from the previous 

year by 1.083. 

In general, to find the number of mating pairs for the next year, we multiply the previous year’s 

estimate by 1.083. We call this the growth factor. 

We view the growth factor as containing information about the percentage increase in the 

population over the previous year. To see how this works, let’s start with a hypothetical situation in 

which there is no change in the number of eagle mating pairs from one year to the next. Then we 

look at different percentages of growth for the first year to build to an understanding of the 

meaning of 1.083: 

No change in the number of eagle pairs: If there is no change in a year, we have 100% of the 

mating pairs from the previous year. The growth factor is 1.00, which is 100% written in decimal 

form. This is important to understand. A growth factor of 1.00 means no growth. This makes sense 

because 121(1.00) = 121; there is no change when we multiply by 1.00. 
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5% growth in the first year: 

• 100% of the mating pairs + 5% increase in mating pairs = 105%. 

• Convert to decimal form to find the growth factor: 105% = 1.05. 

• Now multiply the growth factor by 121 to find the number of mating pairs for the next year: 

121(1.05) = 127. 

If we multiply by 1.05, this is a 5% increase. 

6.8% growth in the first year: 

• 100% of the mating pairs + 6.8% increase in mating pairs = 106.8%. 

• Convert to decimal form to find the growth factor: 106.8% = 1.068. 

• Now multiply the growth factor by 121 to find the number of mating pairs for the next year: 

121(1.068) = 129. If we multiply by 1.068, this is a 6.8% increase. 

What is the meaning of 1.083 in the model Predicted eagle pairs = 121 (1.083)t? 

Answer: The 1.083 is the growth factor; as a percentage, it is 108.3%. We view 108.3% as 100% + 

8.3%. There is an estimated 8.3% increase in the number of eagle pairs each year. (Remember, the 

100% represents no change in the population.) 

Spotlight on Converting Percentages 

Percent means “per 100.” So a percent means “divide by 100.” 

To convert from a percent to the decimal form, divide by 100. 

• For example, 105% means 105 ÷ 100 = 1.05, so 105% = 1.05 

• 106.8% means 106.8 ÷ 100 = 1.068, so 106.8% = 1.068 

• 96.8% means 96.8 ÷ 100 = .968, so 98.6% = 0.968 

• Notice that dividing by 100 moves the decimal two places to the left. 

To convert from a decimal form to a percent, we are converting in the opposite direction, so 

multiply by 100. 

• To convert 1.03 to a percent: 1.03 x 100 = 103, so 1.03 = 103% 
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• To convert 1.083 to a percent: 1.083 x 100 = 108.3, so 1.083 = 108.3% 

• To convert 0.834 to a percent: 0.834 x 100 = 83.4, so 0.834 = 83.4% 

• Notice that multiplying by 100 moves the decimal two places to the right. 

Note: A number is in “decimal form” when it is not a percentage. A percentage like 108.3% is not 

in “decimal form” even though it has a decimal in the number. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=249#h5p-202 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=249#h5p-203 
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EXPONENTIAL RELATIONSHIPS (3 OF 6) 

Learning OUTCOMES 

• Use an exponential model (when appropriate) to describe the relationship between two 

quantitative variables. Interpret the model in context. 

Let’s summarize what we have learned about exponential growth models: 
The general form of an exponential growth model is y = C · bx. 

• C is the initial value. It is the y-value when x = 0. It is also the y-intercept. 
• b is the growth factor; it will always be greater than 1 in cases of growth. From the growth 

factor, we can determine the percentage increase in y for each additional 1 unit increase in x. 

Let’s compare the general form of an exponential growth model to the general form for a linear model:y = a 
+ bx. 

• In the linear model, a is the initial value. It is the y-value when x = 0. It is also the y-intercept. 
• b is the slope. From the slope, we can determine the amount and direction the y-value changes for each 

additional 1 unit increase in x. 

Now we apply what we have learned about exponential growth to find a model for a set of data. 
In this activity, you use a simulation to find an exponential model that fits the population growth of Kenya. 
Here are the data graphed in the scatterplot in the simulation. 
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Notice that the Kenyan population growth has a strong positive exponential form. Use the sliders in the 
simulation to adjust the values of C and b to find a reasonable exponential model that fits this data. 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=251 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=251#h5p-204 
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EXPONENTIAL RELATIONSHIPS (4 OF 6) 

Learning OUTCOMES 

• Use an exponential model (when appropriate) to describe the relationship between two 

quantitative variables. Interpret the model in context. 

We now investigate an exponential model for decline in a population over time. 

Example 

Winter-run Chinook Salmon on the Sacramento River 

The U.S. Endangered Species Act lists nine populations of Chinook salmon as either threatened or 

endangered. One such population is the winter-run Chinook salmon of the Sacramento River in 

northern California. The Chinook was first listed as endangered in 1994. 

A number of factors contributed to the decline of the Chinook on the Sacramento River. Chief 

among these was the construction of the Red Bluff Diversion Dam in 1967. The dam deprived a 

large number of adult salmon access to necessary coldwater spawning grounds. 
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Researchers collected data on the Chinook population at the Red Bluff Dam. This data suggests 

that the population declined from about 40,000 in 1970 to below 200 in 1994: 

Here is a scatterplot of the data for the years 1970 through 1994. The scatterplot has a nonlinear 

form with a negative association between the variables. In other words, we see that the population 

is declining. 
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Note: We defined t, our explanatory variable, to be Number of years after 1970. The response 

variable is the Number of Chinook salmon present in the Sacramento River. 

Our goal is to model the decline of the Sacramento River Chinook population. 

In the scatterplot below, we fit an exponential model to the data for the years 1970 through 1994. 

Notice that this model summarizes the pattern in the data, but the relationship is not as strong as 

we saw in the eagle data. There is more scatter about the exponential curve. 
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The equation of the exponential model is Predicted Chinook population = 49,304 (0.854)t. 

Now we use the exponential model to make predictions about the Chinook population. We expect 

fairly large prediction errors because the association is not strong. 

In 1994 (t = 24), there were 186 Chinook salmon in the Sacramento River, according to the data. 

According to the model: Predicted Chinook population = 49,304 (0.854)24 = 1,117. 

The exponential model overestimates the number of Chinook salmon by 1,117 − 186 = 931 for that 

year. We can tell from the graph that this prediction error is small relative to the prediction error for 

most of the other years. (The data point for 1994, when t = 24, is much closer to the curve than are 

other data points.) 

In 2003 (t = 33), there were 9,757 Chinook, according to the data. 

According to the model: Predicted Chinook population = 49,304 (0.854)33 = 270. 

The exponential model underestimates the number of Chinook by 9,757 − 270 = 9,487. This is a 

huge prediction error. But wait – this is an example of extrapolation: 2003 falls outside of the range 

of the data used to find the model. The model gives unreliable estimates for years outside the 

range of 1975 through 1994. If you look at the data table, you will see that the Chinook population 

started to increase again after 1994, with large increases in 2002 and 2003. Because the pattern 

changes after 1994, this exponential model gives unreliable predictions for years after 1994. (This 

turnaround was the result of the removal of two dams on the Sacramento River and opening the 

dam gates for 8 months a year at the Red Bluff Diversion Dam to allow for fish migration to winter 

spawning areas.) 

Note: In Examining Relationships: Quantitative Data, we investigated techniques for assessing the 

fit of a linear model, such as residual plots, r2 and se. We do not formally investigate residuals for 

exponential functions in this course. We also do not develop formal techniques for assessing the fit 

of an exponential model. 
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EXPONENTIAL RELATIONSHIPS (5 OF 6) 

Learning OUTCOMES 

• Use an exponential model (when appropriate) to describe the relationship between two 

quantitative variables. Interpret the model in context. 

The exponential model used in the Chinook salmon example showed a decline over the years and a negative 
association between the variables; we call such a model an exponential decay model. (Compare this model to 
the exponential growth model we investigated earlier with the eagle pairing data.) 

Now we investigate the meaning of the numbers in the exponential decay model. 

Example 

Understanding the Numbers in the Exponential Decay 
Model 

Our goal in this example is to understand the meaning of the numbers 49,304 and 0.854 in the 

exponential model for predicting the Chinook population. 

Predicted Chinook population = 49,304 (0.854)t 

As before, the 49,304 is the initial value for the exponential model. It is the predicted value for y 

when t = 0. 

• To see this, plug t = 0 into the exponential model: 

Predicted Chinook population = 49,304 (0.854)t 

• Interpretation in context: When t = 0, the year is 1970. In 1970, the predicted number of 

Chinook is 49,304. 

• It is also the y-intercept where the exponential model crosses the y-axis. 
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Now let’s investigate the meaning of 0.854 in the context of Chinook population. 

For 1971, when t = 1, the model predicts y = 49,304 (0.854)1 = 42,106 Chinook salmon in the 

Sacramento River. 

For 1972, when t = 2, the model predicts y = 49,304 (0.854)2 = 35,958 Chinook. 

We can also view the calculation for t = 2 as repeated multiplication by 0.854: 

 

Note: From this viewpoint, we find the Chinook population for 1972 by multiplying the 42,106 

Chinook from the previous year by 0.854. 

Here is another example: For 1973, when t = 3, we can rewrite (0.854)3 as repeated multiplication: 

(0.854)(0.854)(0.854). The exponent 3 tells us to multiply the initial value 49,304 by 0.854 three 

times. 

 

Note: We can also view this process as multiplying the estimated 35,985 Chinook from the previous 

year by 0.854. 

In general, to find the estimated number of Chinook for the next year, we multiply the previous 

year’s estimated population by 0.854. We call this the decay factor. 

We view the decay factor as containing information about the percentage decrease in the 

population over the previous year. To see how this works, let’s start with a hypothetical situation in 

which there is no change in the number of Chinook from one year to the next. Then we look at 

different percentages of decay for the first year to build to an understanding of the meaning of 
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0.854. This is the same type of thinking we performed to analyze the exponential growth model 

previously. 

No change in the number of Chinook: If there is no change in a year, we have 100% of the fish 

from the previous year, so the decay factor is 1.00, which is 100% written in decimal form. As 

before, this is important to understand. A decay factor of 1.00 means no decline in the population. 

This makes sense because 49,304 (1.00) = 49,304; there is no change when we multiply by 1.00. 

5% decay in the first year: 

• 100% of the Chinook – 5% decrease in the Chinook = 95% remaining. 

• Convert to decimal form to find the decay factor: 95% = 0.95. 

• Now multiply the decay factor by 49,304 to find the number of Chinook for the next year: 

49,304(0.95) = 46,839 

• So, if we multiply by 0.95, this is a 5% decrease. 

6.8% decay in the first year: 

• 100% of the Chinook – 6.8% decrease in the Chinook = 93.2% remaining. 

• Convert to decimal form to find the decay factor: 93.2% = 0.932. 

• Now multiply the decay factor by 49,304 to find the number of Chinook for the next year: 

49,304 (0.932) = 45,951 

• So, if we multiply by 0.932, this is a 6.8% decrease. 

What is the meaning of 0.854 in the model Predicted Chinook population = 49,304 (0.854)t? 

Answer: The 0.854 is the decay factor; as a percentage, it is 85.4%. This tells us that 85.4% of the 

previous year’s Chinook population are here this year. To determine the percent decrease, calculate 

100% – 85.4% = 14.6%. There is an estimated 14.6% decrease in the number of Chinook each year. 

(Remember the 100% represents no change in the population.) 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=257#h5p-205 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=257#h5p-206 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=257#h5p-207 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=257#h5p-208 
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EXPONENTIAL RELATIONSHIPS (6 OF 6) 

Learning OUTCOMES 

• Use an exponential model (when appropriate) to describe the relationship between two 

quantitative variables. Interpret the model in context. 

Now we apply what we have learned about exponential decay to find a model for a set of data. We use a 
simulation to find appropriate values for C and b. 

Here are the data we will investigate. 

This table shows the data values, where x is the feet below the surface of the water and y is the predicted light 
intensity measured in lumens in a lake. We can see in the data that the amount of light transmitted through 
water decreases with depth. There is less light at greater depths. 

Here are the data graphed in the scatterplot in the simulation. Notice that the light intensity has a fairly 
strong negative exponential form. Use the sliders in the simulation to adjust the values of C and b to find a 
reasonable exponential model that fits this data. 
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Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=259 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=259#h5p-209 
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PUTTING IT TOGETHER: NONLINEAR 
MODELS 

Let’s Summarize 

This is what we have learned about exponential models: 
The general form of an exponential model is y = C · bx. 

• Exponential models are nonlinear. More specifically, exponential models predict that y increases or 
decreases by a constant percentage for each 1-unit increase in x. 

• C is the initial value. It is the y-value when x = 0. It is also the y-intercept. 

• b is the growth factor or decay factor. b is always positive. 
◦ If b is greater than 1, b is a growth factor. In this case, the association is positive, and y is increasing. 

This makes sense because multiplying by a number greater than 1 increases the initial value. From 
the growth factor, we can determine the percent increase in y for each additional 1-unit increase in 
x. 

◦ Similarly, if b is greater than 0 and less than 1, b is a decay factor. In this case, the association is 
negative, and y is decreasing. From the decay factor, we can determine the percentage decrease in y 
for each additional 1-unit increase in x. 

Let’s compare the general form of an exponential model to the general form for a linear model:y = a + bx. 

• In the linear model, a is the initial value. It is the y-value when x = 0. It is also the y-intercept. 

• b is the slope. From the slope, we can determine the amount and direction the y-value changes for each 
additional 1-unit increase in x. When b is positive, there is a positive association, and y increases. When b 
is negative, there is a negative association, and y decreases. 
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WHY IT MATTERS: RELATIONSHIPS IN 
CATEGORICAL DATA WITH INTRO TO 
PROBABILITY 

Why understand the relationships within categorical data? 

Before we begin Relationships in Categorical Data with Intro to Probability, it is helpful to consider how it 
relates to the work we have already done in previous modules. 

At the start of Summarizing Data Graphically and Numerically, we stated the difference between 
quantitative and categorical variables: 

• Quantitative variables have numeric values that can be averaged. A quantitative variable is frequently a 
measurement – for example, a person’s height in inches. 

• Categorical variables are variables that can have one of a limited number of values, or labels. Values 
that can be represented by categorical variables include, for example, a person’s eye color, gender, or 
home state; a vehicle’s body style (sedan, SUV, minivan, etc.); a dog’s breed (bulldog, greyhound, beagle, 
etc.). 

The remainder of Summarizing Data Graphically and Numerically focused on describing the overall 
pattern (shape, center, and spread) of the distribution of a quantitative variable. 

In and Examining Relationships: Quantitative Data and Nonlinear Models, our goal was to identify and 
model the relationship between two quantitative variables. 

Now, in this module, we turn our full attention back to categorical variables. Our objective is to study 
the relationship between two categorical variables. Just as in Examining Relationships: Quantitative Data and 
Nonlinear Models, we will be looking for patterns in the data. 

As we organize and analyze data from two categorical variables, we make extensive use of two-way tables. 
Two-way tables for two categorical variables are in some ways like scatterplots for two quantitative variables: 
they give us a useful snapshot of all of the data organized in terms of the two variables of interest. This will 
be helpful in finding and comparing patterns. This part of Relationships in Categorical Data with Intro to 
Probability is exploratory data analysis in the Big Picture of Statistics. 

A second important objective of this module is to introduce you to the concept of probability. Two-way 
tables give us a practical context for talking about probability. We also use two-way tables to help us visualize 
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and solve real-world problems involving probability. This part of the module is part of probability in the Big 
Picture of Statistics. 
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INTRODUCTION TO TWO-WAY TABLES 

What you’ll learn to do: Analyze the relationship between 
two categorical variables using a two-way table. 

Recall, categorical data is data that consists of labels (such as person’s gender, an object’s color, or location). 
Since categorical data does not return a measurement, it is often convenient to summarize study results with 
counts (for example, total number of females, or total number of males). In this section, we introduce two 
way tables and conditional percentages as a way to investigate possible relationships between two categorical 
variables. 
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TWO-WAY TABLES (1 OF 5) 

Learning OUTCOMES 

• Analyze the distribution of a categorical variable. 

• Analyze the relationship between two categorical variables using a two-way table. 

We begin our discussion by analyzing the distribution of a single categorical variable. Then we focus on 
analyzing the association between two categorical variables. 

Example 

Body Image 

What is your perception of your own body? Do you feel that you are overweight, underweight, or 

about right? A random sample of 1,200 U.S. college students answered this question as part of a 

larger survey. The following table shows part of the responses: 

Student Body Image 

student 25 overweight 

student 26 about right 

student 27 underweight 

student 28 about right 

student 29 about right 

Here are the questions we investigate: 

• What percentage of students in the sample fall into each category? 
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• How are students divided across the three body image categories? 

• Is there a pattern in the responses? 

• Which response is the most common? 

It is difficult to answer these questions by looking at the raw data because the raw data is a long 

list of 1,200 responses. We cannot see patterns easily by looking at a list, so we summarize the 

distribution in a table. 

Recall from Summarizing Data Graphically and Numerically that in a graph that summarizes the 

distribution of a quantitative variable, we can see 

• the possible values of the variable. 

• the number of individuals with each variable value or interval of values. 

Here we use a table instead of a graph to summarize the distribution of a categorical variable. We 

create a table so we can see 

• the different values (categories) the variable takes. 

• how many times each value occurs (count) and, more important, how often each value 

occurs (by converting the counts to proportions). 

Here is the table for our example: 

Category Count Proportion Percentage 

underweight 110 110/1,200 = 0.092 9.2% 

overweight 235 235/1,200 = 0.196 19.6% 

about right 855 855/1,200 = 0.713 71.3% 

We can use a stacked bar chart to display the distribution of the body image variable. Note that 

this distribution is completely described by the three percentages 9.2%, 19.6%, and 71.3%, which 

correspond to the three categories of the body image variable: “underweight,” “overweight,” and 

“about right.” The percentages add to 100% because all 1,200 individual responses fall into one of 

these three categories. (Note that the percentages actually add up to 99.9% because we rounded 

percentages to three decimal places.) 
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Now that we have summarized the distribution of values in the body image variable, let’s go back and 
interpret the results in the context of the questions we posed. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=269#h5p-223 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=269#h5p-224 

Example 

Two-Way Table for Body Image and Gender 

Once we’ve interpreted the results, another interesting question arises: If we separate our sample 

by gender and compare the male and female responses, will we find a similar distribution across 

body image categories? Or is there a difference based on gender? 

Answering these questions requires us to examine the relationship between two categorical 

variables: gender and body image. We want to determine if gender explains the differences in body 

image responses. Therefore, 

• the explanatory variable is gender, and 

• the response variable is body image. 

Here is part of the raw data for body image and gender of each student: 

Student Gender Body Image 

student 25 M overweight 

student 26 M about right 

student 27 F underweight 

student 28 F about right 

student 29 M about right 

Once again, the raw data is a long list of 1,200 responses. We need to organize the information in a 

table so we can more easily compare the results for females and males. To summarize the 

relationship between two categorical variables, we create a display called a two-way table. 
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Here is the two-way table for our example: 

About Right Overweight Underweight Row Totals 

Female 560 163 37 760 

Male 295 72 73 440 

Column Totals 855 235 110 1,200 

Let’s take a closer look at this table: 

The table helps us to compare females to males because there is a row for each gender. The body 

image categories are the columns. As we move across a particular row, all of the individuals are of 

the same gender. And as we move down a particular column, all of the individuals have the same 

body image. 

We also added a row at the bottom and a column at the right, which we call the margins of the 

table. The numbers in the margins are totals for each row or column. 

In the following table, look at the numbers in the Female row and note that their sum, 560 + 163 + 

37 = 760, is displayed in the margin at the right labeled Row Totals. There are 760 females in the 

sample. 

About Right Overweight Underweight Row Totals 

Female 560 163 37 760 

Male 295 72 73 440 

Column Totals 855 235 110 1,200 

Likewise, in the next table, look at the numbers in the Overweight column and note that their sum, 

163 + 72 = 235, is displayed in the margin at the bottom of the table labeled Column Totals. There 

are 235 students in the sample who answered “overweight” to the body image question. 

About 
Right Overweight Underweight Row 

Totals 

Female 560 163 37 760 

Male 295 72 73 440 

Column Totals 855 235 110 1,200 

Where a row and column cross, we see the number of individuals who fit both descriptions: a 
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particular gender and a particular body image. It may be helpful to think of the six inner cells as six 

rooms filled with the 1,200 students from the sample. For example, in one room are the 72 males 

who think of themselves as overweight. In another room, we have 37 females who think of 

themselves as underweight. (Maybe they should have a potluck and get to know each other.) 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=269#h5p-225 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=269#h5p-226 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=269#h5p-227 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=269#h5p-228 

So far we have organized the raw data in a much more informative display – the two-way table. But we have 
not answered our primary question: Is body image related to gender? 

Exploring the relationship between two categorical variables (in this case, body image and gender) amounts 
to comparing the distributions of the response variable (in this case, body image) for different values of the 
explanatory variable (in this case, male vs. female). 

We do this in the next example. 

Example 

Is Body Image Related to Gender? 

Here we have removed the column totals from the table because gender is the explanatory 

variable. We compare females with particular body image responses to males with the same 

response, so we need to know the total numbers of females and males. We no longer need to 

know the total number of students for each body image category. 

Note that there are more females than males, so when we compare females to males, it is 

misleading to compare raw counts in each body image category. For example, it is misleading to 
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say, “Five-hundred sixty females responded ‘about right’ compared to only 295 males,” because the 

sample includes a lot more females than males. Instead, we compare the percentage of females 

who responded “about right” to the percentage of males who responded “about right”: 

• Of the 760 females, 560 responded “about right”: 560 ÷ 760 = 0.737 = 73.7% 

• Of the 440 males, 295 responded “about right”: 295 ÷ 440 = 0.67 = 67% 

We can interpret percentages as “a number out of 100,” so by converting to percentages, we are 

reporting the results as though there are 100 females and 100 males. We can see that a higher 

percentage of females feel “about right” about their body weight. 

In general, we need to supplement our display, the two-way table, with numeric summaries that 

allow us to compare the distributions. Therefore, we always convert counts to percentages. 

Note: It is important to identify the explanatory variable because we always use the totals for the 

explanatory variable to calculate the percentages. 

In our example, we look at each gender separately and convert the counts to percentages within 

each gender. In the Female row, we divide each count by 760, the total number of females. In the 

Male row, we divide each count by 440, the total number of males. The resulting percentages are 

shown in the following table: green for females, black for males. We call these conditional 

percentages. The percentages in green are the distribution of body image based on the condition 

that students are female. The percentages in black are the distribution of body image based on the 

condition that students are male. Thus, our two sets of conditional percentages form two 

conditional distributions for body image. 

About Right Overweight Underweight Row Totals 

Female 560/760 = 73.7% 163/760 = 21.4% 37/760 =4.9% 760/760 = 100% 

Male 295/440 = 67% 72/440 = 16.4% 73/440 = 16.6% 440/440 = 100% 

Here is a side-by-side display comparing the conditional body image distributions for females and 

males. 
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Now that we summarized the relationship between the categorical variables gender and body 

image, we use the next activity to interpret the results in the context of the questions we posed. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=269#h5p-229 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=269#h5p-230 
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An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=269#h5p-231 

At the start of this example, we asked the following questions: 

If we separate our sample by gender and compare the male and female responses, will we find a 

similar distribution across body image categories? Or is there a difference based on gender? 

As a result of our analysis, we know that the conditional distributions for males and females for 

body image are not the same. And there is enough of a difference to believe that these two 

categorical variables are in fact related. 

In the next activity, we practice investigating the relationship between two different categorical 

variables. 

We investigate this question in the next activity: Is there a relationship between smoking rates and college 
programs? Researchers sent an online health behavior survey to 25,000 college students in 2009. The following 
table summarizes results based on 6,055 student responses. (C. J. Berg, C. M. Klatt, J. L. Thomas, J. S. 
Ahluwalia, and L. C. An, “The Relationship of Field of Study to Current Smoking Status among College 
Students,” College Student Journal 43(3):744–754, 2009.) 
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Smoked in Last 30 Days Did Not Smoke in Last 30 Days 

Art, design, performing arts 149 336 485 

Humanities 197 454 651 

Communication, languages 233 389 622 

Education 56 170 226 

Health Sciences 227 717 944 

Math, engineering, sciences 245 924 1,169 

Social science, human services 306 593 899 

Independent study 134 260 394 

Undeclared 176 489 665 

1,723 4,332 6,055 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=269#h5p-232 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=269#h5p-233 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=269#h5p-234 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=269#h5p-235 

In the next activity, we investigate whether health insurance coverage differs by geographic region. The U.S. 
government collects information on Americans who do not have health insurance. Here is the data: 

Region Uninsured Insured Row Totals 

Northeast 6,782 47,043 53,825 

Midwest 7,757 57,135 64,892 

South 19,090 85,800 104,890 

West 11,676 55,427 67,103 

Column Totals 45,305 245,405 290,710 

Let’s Summarize 

The relationship between two categorical variables is summarized using 

• Data display: Two-way table, supplemented by 
• Numeric summaries: Conditional percentages. 

Conditional percentages are calculated separately for each value of the explanatory variable. When we 
try to understand the relationship between two categorical variables, we compare the distributions of the 
response variable for values of the explanatory variable. In particular, we look at how the pattern of conditional 
percentages differs between the values of the explanatory variable. 
CC licensed content, Shared previously 
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TWO-WAY TABLES (2 OF 5) 

Learning OUTCOMES 

• Calculate marginal, joint, and conditional percentages and interpret them as probability 

estimates. 

In the previous section, we used the information in a two-table to examine the relationship between two 
categorical variables. Our goal was to answer the big question: Are the variables related? 

In this section, we continue to work with two-way tables, but we ask a different set of questions. 

Example 

Community College Enrollment 

The following table summarizes the full-time enrollment at a community college located in a West 

Coast city. There are a total of 12,000 full-time students enrolled at the college. The two categorical 

variables here are gender and program. The programs include academic and vocational programs at 

the college. Assume that a student can enroll in only one program. 

Arts-Sci Bus-Econ Info 
Tech 

Health 
Science 

Graphics 
Design 

Culinary 
Arts 

Row 
Totals 

Female 4,660 435 494 421 105 83 6,198 

Male 4,334 490 564 223 97 94 5,802 

Column 
Totals 8,994 925 1,058 644 202 177 12,000 

Let’s consider a few preliminary questions to get familiar with this new data set. 

1. What proportion of the total number of students are male students? 
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Answer: 

2. What proportion of the total number of students are Bus-Econ students? 

Answer: 

Note that to calculate this proportion, we used two numbers in the margin that relate to just one of 

the categorical variables (program). This calculation is therefore called a marginal proportion. 

Note: This proportion does not help us determine if gender is related to program because it 

involves only one of the variables. 

Now consider the following question: 

If we choose one student at random from among all 12,000 students at the college, how 

likely is it that this student will be in the Bus-Econ program? 

From our previous calculation, we know that only about 8% (7.7%) of the students at the college 

are in the Bus-Econ program. That’s a fairly low number, so it is not very likely that our random 

student will be a Bus-Econ student. 

One way to state our conclusion is to say: 

There is about an 8% chance of picking a Bus-Econ major. 

This means that if we selected 100 students at random, we would expect on average that 8 of 

them would be in the Bus-Econ program. 

Here is another way to state this conclusion: 

There is about an 0.08 probability of picking a Bus-Econ major. 

Because this probability is exactly the same as the marginal proportion we calculated earlier, we call 

it a marginal probability. 

Note: 

P for Probability 
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It is customary to use the capital letter P to stand for probability. So instead of writing “The probability that 
a student is in Bus-Econ program equals 0.08,” we can write P(student is in Bus-Econ) = 0.08. 

The following table is used for the next Try It and Did I Get This? activities. 

Arts-Sci Bus-Econ Info 
Tech 

Health 
Science 

Graphics 
Design 

Culinary 
Arts 

Row 
Totals 

Female 4,660 435 494 421 105 83 6,198 

Male 4,334 490 564 223 97 94 5,802 

Column 
Totals 8,994 925 1,058 644 202 177 12,000 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=270#h5p-236 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=270#h5p-237 

Example 

Conditional Probability 

Here is the same community college enrollment data. 
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Arts-Sci Bus-Econ Info 
Tech 

Health 
Science 

Graphics 
Design 

Culinary 
Arts 

Row 
Totals 

Female 4,660 435 494 421 105 83 6,198 

Male 4,334 490 564 223 97 94 5,802 

Column 
Totals 8,994 925 1,058 644 202 177 12,000 

Here is our first question: 

If we select a female student at random, what is the probability that she is in the Health 

Sciences program? 

Answer: Of the 6,198 female students at the college, 421 are enrolled in Health Sciences. (Find 

these numbers in the table.) The probability we are looking for is: 

Therefore, the probability that a female student is in the Health Sciences program is approximately 

0.07. 

Focus on Language 

We need to pause here and be very careful about the language we use in describing this situation. 

Note that we start with a female student and then ask what is the probability that this female 

student is in the Health Sciences department. 

In this case, our starting point is that the student is a female. This information sets the conditions 

for calculating the probability. Once the condition (student is female) is set, we focus on the female 

student population. In terms of the two-way table, it means that the only numbers we will be 

using are in the Female row: 421 and 6,198. 

What Is a Conditional Probability? 

The probability we calculated earlier is an example of a conditional probability. In general, a 

conditional probability is one that is based on a given condition. Here the given condition is that the 

student is female. 

Here is the notation we use for a conditional probability: 

• Original question: If we select a female student at random, what is the probability that she is 

in the Health Sciences program? 

399  |  



• Notation: P(student is in Health Sciences given that student is female). 

• We also write this as P(Health Sciences given female). 

An even shorter way of writing this is to use a vertical bar | in place of given:P(Health Sciences | 

female). 

The following table is used for the next Try It and Did I Get This? activities. 

Arts-Sci Bus-Econ Info Tech Health Science Graphics Design Culinary Arts Row Totals 

Female 4,660 435 494 421 105 83 6,198 

Male 4,334 490 564 223 97 94 5,802 

Column Totals 8,994 925 1,058 644 202 177 12,000 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=270#h5p-238 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=270#h5p-239 
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TWO-WAY TABLES (3 OF 5) 

Learning OUTCOMES 

• Calculate marginal, joint, and conditional percentages and interpret them as probability 

estimates. 

At this point, we know how to determine marginal probabilities, such as the probability that a randomly 
selected student is female: P(female). 

And we know how to calculate conditional probabilities, such as the probability that a randomly selected 
female student is in the Health Science program: P(Health Science | female) 

But we do not know how to calculate joint probabilities, such as the probability that a randomly selected 
student is both a female and in the Health Sciences program. 

We write this joint probability as P(female and Health Sciences). 
The following example illustrates how to calculate a joint probability. 

Example 

Joint Probability 

Question: 

If we select a student at random, what is the probability that the student is both a male and in the 

Info Tech program? 

Answer: This question involves male students who are in the Info Tech program, but it is NOT a 

conditional probability. We are picking a student at random from the entire population of 12,000 

students, so there is no condition. Our shorthand notation for this probability is: 

P(male and Info Tech) 
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Since 564 of the 12,000 students enrolled at the college are both male and in the Info Tech program 

(see table), the probability P(male and Info Tech) is: 

Arts-Sci Bus-Econ Info 
Tech 

Health 
Science 

Graphics 
Design 

Culinary 
Arts 

Row 
Totals 

Female 4,660 435 494 421 105 83 6,198 

Male 4,334 490 564 223 97 94 5,802 

Column 
Totals 8,994 925 1,058 644 202 177 12,000 

We call this calculation a joint probability. Note that when we calculate a joint probability, we 

divide the count from an inner cell of the table by the overall total count in the lower right corner. 

The following table is used for the next Try It activities. 

Arts-Sci Bus-Econ Info 
Tech 

Health 
Science 

Graphics 
Design 

Culinary 
Arts 

Row 
Totals 

Female 4,660 435 494 421 105 83 6,198 

Male 4,334 490 564 223 97 94 5,802 

Column 
Totals 8,994 925 1,058 644 202 177 12,000 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=271#h5p-240 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=271#h5p-241 
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Learning OUTCOMES 

• Analyze and compare risks using conditional probabilities. 

When we calculate the probability of a negative outcome like a heart attack, we often refer to the probability 
as a risk. For example, we talk about the probability of winning the lottery but the risk of getting struck by 
lightning. Whenever you see the word risk, keep in mind it’s just another word for probability. 

Example 

Risk and the Physicians’ Health Study 

Researchers in the Physicians’ Health Study (1989) designed a randomized clinical trial to determine 

whether aspirin reduces the risk of heart attack. Researchers randomly assigned a large sample of 

healthy male physicians (22,071) to one of two groups. One group took a low dose of aspirin (325 

mg every other day). The other group took a placebo. This was a double-blind experiment. Here are 

the final results. 

Heart Attack No Heart Attack Row Totals 

Aspirin 139 10,898 11,037 

Placebo 239 10,795 11,034 

Column Totals 378 21,693 22,071 

Note that the categorical variables in this case are 

• Explanatory variable: Treatment (aspirin or placebo) 

• Response variable: Medical outcome (heart attack or no heart attack) 
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Question: 

Does aspirin lower the risk of having a heart attack? 

To answer this question, we compare two conditional probabilities: 

• The probability of a heart attack given that aspirin was taken every other day. 

• The probability of a heart attack given that a placebo was taken every other day. 

From the table we have 

• P(heart attack | aspirin) = 139 / 11,037 = 0.013 

• P(heart attack | placebo) = 239 / 11,034 = 0.022 

The result shows that taking aspirin reduced the risk from 0.022 to 0.013. 

We often compare two risks by calculating the percentage change. We calculate the difference 

(how much the risk changed) and divide by the risk for the placebo group. 

Here is the calculation: 

Therefore, we conclude that taking aspirin results in a 41% reduction in risk. 

As reported in the New England Journal of Medicine, “This trial of aspirin for the primary 

prevention of cardiovascular disease demonstrates a conclusive reduction in the risk of myocardial 

infarction (heart attack).” (SOURCE: “FINAL REPORT ON THE ASPIRIN COMPONENT OF THE ONGOING 

PHYSICIANS’ HEALTH STUDY,” NEW ENGLAND JOURNAL OF MEDICINE 321(3):129–35, 1989.) 

Comment 
In the preceding example, we compared the difference in risk (how much the risk changed) to the risk for the 

placebo (nontreatment) group: 

In general, we are interested in determining how much a new treatment reduces the risk compared to a 
reference risk. The reference may be nontreatment (e.g., use of a placebo), or it could be an existing treatment 
that we hope to improve on. So we have: 

The following table is used for the next Try It activity. 
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Nonfatal Fatal Row Totals 

Seat Belt 412,368 510 412,878 

No Seat Belt 162,527 1,601 164,128 

Column Totals 574,895 2,111 577,006 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=272#h5p-242 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=272#h5p-243 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=272#h5p-244 

Let’s summarize our work with probability. We defined three kinds of probabilities related to a two-way 
table. 

• A marginal probability is the probability of a categorical variable taking on a particular value without 
regard to the other categorical variable. For example, P(Health Sciences) is the probability that a student 
is enrolled in the Health Sciences program. In calculating the probability, we use overall student data 
contained in the margins of the table. We do not take into account the other categorical variable: gender. 

• A conditional probability is the probability of a categorical variable taking on a particular value given the 
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condition that the other categorical variable has some particular value. For example, P(Health Sciences 
given female) is the probability that a student is enrolled in Health Sciences given that we know the 
student is female. In calculating the probability, we use only a subset of the data. The subset used is 
determined by the given condition: if our condition relates to female students, then we consider only the 
information in the table pertaining to females. 

• A joint probability is the probability that the two categorical variables each take on a specific value. For 
example: P(male and Info Tech) is the probability that a student is both a male and in the Info Tech 
program. In calculating this probability, we divide the count in one inner cell of the table by the overall 
total count (in the lower right corner). 

When we calculate the probability of a negative outcome like a heart attack, we often refer to the probability 
as a risk. We compare risk by calculating the percentage change: 
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TWO-WAY TABLES (5 OF 5) 

Learning OUTCOMES 

• Create a hypothetical two-way table to answer more complex probability questions. 

In our previous work with probability, we computed probabilities using a two-way table of data from a large 
sample. Now we create a hypothetical two-way table to answer more complex probability questions. 

Example 

Will It Be a Boy or a Girl? 

A pregnant woman often opts to have an ultrasound to predict the gender of her baby. 

Assume the following facts are known: 

• Fact 1: 48% of the babies born are female. 

• Fact 2: The proportion of girls correctly identified is 9 out of 10. 

• Fact 3: The proportion of boys correctly identified is 3 out of 4. 

(SOURCE: KEELER, CAROLYN, AND STEINHORST, KIRK. “NEW APPROACHES TO LEARNING PROBABILITY IN 

THE FIRST STATISTICS COURSE,” JOURNAL OF STATISTICS EDUCATION 9(3):1–24, 2001.) 

Here are the questions we want to answer: 

Question 1: 

If the examination predicts a girl, how likely is it that the baby will be a girl? 

Question 2: 

If the examination predicts a boy, how likely is it that the baby will be a boy? 

Let’s consider what the possibilities are. 
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• The ultrasound examination predicts a girl, and either (a) a girl is born or (b) a boy is born. 

• The ultrasound exam predicts a boy, and either (a) a girl is born or (b) a boy is born. 

Let’s represent these four possible outcomes in a two-way table. On the left we have the 

categorical variable prediction, and on the top the categorical variable gender of baby. 

Girl Boy 

Predict Girl 

Predict Boy 

Now we find ourselves in an interesting situation. A two-way table without data! 

The key idea is to create a two-way table consistent with the stated facts, then use the table to 

answer our questions. 

To get started, let’s assume we have ultrasound predictions for 1,000 random babies. We could 

have picked any number here, but 1,000 will make our calculations easier to keep track of. 

Starting with this number, we work backwards with our three facts to fill in this “hypothetical” 

table. 

The first step is to put 1,000 as the overall total in the bottom right corner. 

Girl Boy Row Totals 

Predict Girl 

Predict Boy 

Column Totals 1,000 

Let’s consider Fact 1: 48% of the babies born are female. 

The bottom row gives the distribution of the categorical variable gender of baby. We can use this 

fact to compute the total number of girls and boys. 

• 48% girls means that 0.48 (1,000) = 480 are girls. 

• 52% are boys. (If 48% are girls, then 100% − 48% = 52% are boys.) So, 0.52(1,000) = 520 

boys. 

Fill these values into the bottom row of table. 

• Note: These are marginal totals. 
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• You can check your work: These numbers should add to 1,000. If we add all the girls and 

boys together, we get the total number of babies. 

Girl Boy Row Totals 

Predict Girl 

Predict Boy 

Column Totals 0.48(1,000) = 480 0.52(1,000) = 520 1,000 

Now let’s move on to Fact 2: The proportion of girls correctly identified is 9 out of 10. 

• 9 out of 10 is 90% (9 ÷ 10 = 0.90 = 90%). 

• 90% of the girls are correctly identified: 0.90(480) = 432. 

• 10% of the girls are misidentified (predicted to be a boy): 0.10(480) = 48. 

Fill these values into the table. 

• You can check your work: These numbers should add to the total number of girls. 

• (Girls who are correctly identified as girls ) + (Girls who are misidentified as boys) = Total girls 

Girl Boy Row Totals 

Predict Girl 0.90(480)= 432 

Predict Boy 0.10(480) = 48 

Column Totals 480 520 1,000 

Finally, we use Fact 3: The proportion of boys correctly identified is 3 out of 4. 

• 3 out of 4 is 75% (3 ÷ 4 = 0.75 = 75%). 

• 75% of the boys are correctly identified: 0.75(520) = 390. 

• 25% of the boys are misidentified (predicted to be a girl): 0.25(520) = 130. 

Fill these values into the table. 

• You can check your work: These numbers should add to the total number of boys. 

• (Boys who are correctly identified as boys ) + (Boys who are misidentified as girls) = Total 

boys 
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Girl Boy Row Totals 

Predict Girl 432 0.25(520) = 130 

Predict Boy 48 0.75(520) = 390 

Column Totals 480 520 1,000 

Filling in the Row Totals, we now have a complete hypothetical two-way table based on our given 

information. 

Girl Boy Row Totals 

Predict Girl 432 130 562 

Predict Boy 48 390 438 

Column Totals 480 520 1,000 

We are now in a position to answer our two questions: 

Question 1: 

If the examination predicts a girl, how likely is it that the baby will be a girl? 

Answer: We are asked to find the probability of a girl given that the examination predicts a girl. 

This is the conditional probability: P(girl | predict girl). 

So our answer to Question 1 is P(girl | predict girl) = 432 / 562 = 0.769. 

Question 2: 

If the examination predicts a boy, how likely is it that the baby will be a boy? 

Answer: We are asked to find the probability of a boy given that the examination predicts a boy. 

This is the conditional probability: P(boy | predict boy). 

So our answer to Question 2 is P(boy | predict boy) = 390 / 438 = 0.890. 

Conclusion: If an ultrasound examination predicts a girl, the prediction is correct about 77% of the 

time. In contrast, when the prediction is a boy, it is correct 89% of the time. 

Comment 
Are you surprised at the answers to these questions? Looking just at the three given facts, you might have 

intuitively expected a different result. This is exactly why a two-way table is so useful. It helps us organize the 
relevant information in a way that permits us to carry out a logical analysis. When it comes to probability, 
sometimes our intuition needs some help. 
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Use the following context for the next Try It activity. 
A large company has instituted a mandatory employee drug screening program. Assume that the drug test 

used is known to be 99% accurate. That is, if an employee is a drug user, the test will come back positive (“drug 
detected”) 99% of the time. If an employee is a non-drug user, then the test will come back negative (“no drug 
detected”) 99% of the time. Assume that 2% of the employees of the company are drug users. 

In constructing the hypothetical two-way table, it is convenient to start by assuming that the company has 
10,000 employees (10,000 is a large enough number to ensure that all calculations result in whole numbers). 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=273#h5p-245 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=273#h5p-246 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=273#h5p-247 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=273#h5p-248 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=273#h5p-249 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=273#h5p-250 
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PUTTING IT TOGETHER: RELATIONSHIPS IN 
CATEGORICAL DATA WITH INTRO TO 
PROBABILITY 

Let’s Summarize 

To summarize the relationship between two categorical variables, use: 

• A data display: A two-way table 
• Numerical summaries: Conditional percentages 

When we investigate the relationship between two categorical variables, we use the values of the explanatory 
variable to define the comparison groups. We then compare the distributions of the response variable for values 
of the explanatory variable. In particular, we look at how the pattern of conditional percentages differs between 
the values of the explanatory variable. 

For example, we investigated the relationship between body image and gender. We compared males to 
females. For each gender, we determined the percentage who felt their body weight was about right, 
overweight, or underweight. P(body image “about right” | male) is compared to P(body image “about 
right” | female). 

Keys Ideas from Our Work with Probability 

We defined three kinds of probabilities related to a two-way table: 

• A marginal probability is the probability of a categorical variable taking on a particular value without 
regard to the other categorical variable. For example, P(Health Sciences) is the probability that a student 
is enrolled in the Health Sciences program. In calculating the probability, we use overall student data 
contained in the margins of the table. A marginal probability is a row or column total divided by the 
table total. 

• A conditional probability is the probability of a categorical variable taking on a particular value given 
the condition that the other categorical variable has some particular value. For example, P(Health Sciences 
given female) means we look first at all females, then identify the female students who are Health 
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Science students. In calculating the probability, we use only a subset of the data. The condition 
determines the subset of data we use. If our condition relates to female students, then we consider only 
the information in the table pertaining to females. 

• A joint probability is the probability that the two categorical variables each take on a specific value. For 
example: P(male and Info Tech) is the probability that a student is both a male and in the Info Tech 
program. In calculating this probability, we divide the count from one inner cell of the table by the 
overall total count (in the lower right corner.) 

When we calculate the probability of a negative outcome, we often refer to the probability as a risk. We 
compare risk by calculating the percentage change (divide difference in risks by risk in placebo group). 

Finally, we created hypothetical two-way tables to compute complex probabilities, such as the probability of 
a positive drug test for someone who does not use drugs. 
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An 
interac
tive or 
media 
eleme
nt has 
been 
exclud
ed 
from 
this 
versio
n of 
the 
text. 
You 
can 
view it 
online 
here: 
https://

STATTUTOR: TREATING DEPRESSION: A 
RANDOMIZED CLINICAL TRIAL 

You are now ready to practice what you learned in this module by doing a StatTutor exercise. StatTutor 
exercises are designed to help you apply what you have learned to a real life data analysis question. 

Instructions: One of the first few screens in StatTutor has a link to download the dataset for this StatTutor 
exercise. When you click that link, a pop-up window will appear asking if you want to open or save the file. 
Make sure you click “Save,” which will allow you to save the file to your hard drive. Then find the downloaded 
file and double-click it to open it if you’re using R, Minitab, Excel, or StatCrunch, or transfer it to your 
calculator if you’re using the TI Calculator. 
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WHY IT MATTERS: PROBABILITY AND 
PROBABILITY DISTRIBUTIONS 

Why learn about probability and probability distributions? 

Recall the Big Picture—the four-step process that encompasses statistics (as it is presented in this course): 

So far, we’ve discussed the first two steps: 
Producing data—how data are obtained and what considerations affect the data production process. 
Exploratory data analysis—tools that help us get a first feel for the data by exposing their features using 

graphs and numbers. 
Our eventual goal is inference—drawing reliable conclusions about the population on the basis of what 

we’ve discovered in our sample. To really understand how inference works, though, we first need to talk about 
probability, because it is the underlying foundation for the methods of statistical inference. We use an example 
to try to explain why probability is so essential to inference. 

First, here is the general idea: As we all know, the way statistics works is that we use a sample to learn 
about the population from which it was drawn. Ideally, the sample should be random so that it represents the 
population well. 

Recall from Types of Statistical Studies and Producing Data that when we say a random sample represents 
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the population well, we mean that there is no inherent bias in this sampling technique. It is important to 
acknowledge, though, that this does not mean all random samples are necessarily “perfect.” Random samples 
are still random, and therefore no random sample will be exactly the same as another. One random sample may 
give a fairly accurate representation of the population, whereas another random sample might be “off” purely 
because of chance. Unfortunately, when looking at a particular sample (which is what happens in practice), 
we never know how much it differs from the population. This uncertainty is where probability comes into the 
picture. We use probability to quantify how much we expect random samples to vary. This gives us a way to 
draw conclusions about the population in the face of the uncertainty that is generated by the use of a random 
sample. The following example illustrates this important point. 

Example 

Death Penalty 

Suppose we are interested in estimating the percentage of U.S. adults who favor the death penalty. 

To do so, we choose a random sample of 1,200 U.S. adults and ask their opinion: either in favor of or 

against the death penalty. We find that 744 of the 1,200, or 62%, are in favor. (Although this is only 

an example, 62% is quite realistic given some recent polls). Here is a picture that illustrates what we 

have done and found in our example: 

Our goal is to do inference—to learn and draw conclusions about the opinions of the entire 

population of U.S. adults regarding the death penalty on the basis of the opinions of only 1,200 of 

them. 
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Can we conclude that 62% of the population favors the death penalty? Another random sample 

could give a very different result, so we are uncertain. But because our sample is random, we know 

that our uncertainty is due to chance, not to problems with how the sample was collected. So we 

can use probability to describe the likelihood that our sample is within a desired level of accuracy. 

For example, probability can answer the question, How likely is it that our sample estimate is no 

more than 3% from the true percentage of all U.S. adults who are in favor of the death penalty? 

Answering this question (which we do using probability) is obviously going to have an important 

impact on the confidence we can attach to the inference step. In particular, if we find it quite 

unlikely that the sample percentage will be very different from the population percentage, then we 

have a lot of confidence that we can draw conclusions about the population on the basis of the 

sample. 

In this module, we discuss probability more generally. Then we begin to develop the probability 

machinery that underlies inference. 
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INTRODUCTION TO ANOTHER LOOK AT 
PROBABILITY 

What you’ll learn to do: Interpret (in context) a probability 
as a long-run relative frequency of an event. 

Probability is a theoretical measurement of the likelihood 
of an event occurring. Building a solid foundation in 
probability helps us to better understand the data we 
collect in the real world and whether that data yields 
statistically surprising results. In statistical experiments 
and studies, we will estimate probabilities from collected 
data, and our interpretations and findings are based on 
probability concepts. In this next section, we begin 
building a solid foundation in probability and understand 
how to interpret a long-run relative frequency of an event. 
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ANOTHER LOOK AT PROBABILITY (1 OF 2) 

Learning OUTCOMES 

• Interpret (in context) a probability as a long-run relative frequency of an event. 

In the module Relationships in Categorical Data with Intro to Probability, we used the word probability to 
mean “likelihood” or “chance.” We used data to make statements about 

• the likelihood that a randomly selected student from a specific college is a Health Science major. 
• the risk associated with not wearing a seat belt. 
• the chance of a positive drug test for someone who does not use drugs when the test is 94% accurate. 

For each of these probability statements, we used a notation P(A) where A is the description of an event. We 
used the following notation to represent probability statements like the preceding ones: 

• P(Health Science) 
• P(fatal accident given that the person was not wearing a seatbelt) = P(fatal accident | not wearing a 

seatbelt) 
• P(a person is not a drug user given that the person had a positive test result) = P(not a drug user | 

positive test result) 

In each case, the probability was a number between 0 and 1. What does this number tell us about the 
likelihood of an event occurring? 

 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=283#oembed-1 

431  |  



 
In summary, the probability that an event will occur is a number between (and including) 0 and 1. We write 

this idea in mathematical notation as 0 ≤ P(A) ≤ 1. 

Example 

A Closer Look at How We Calculate Probabilities 

You may have had some experience with probability using coins, cards, and dice. 

What is the probability that when you flip a coin you get heads? 

What is the probability that when you roll the dice you get doubles? 

We can answer these types of probability questions without collecting data. In situations where 

the outcomes are equally likely, we can use mathematics to calculate the probability instead of 

collecting data. For example, what is the probability of getting heads when you toss a coin? There 

are two equally likely outcomes: heads or tails. So . This is the theoretical 

probability of getting a head when you toss a coin. We determine the number of ways an event 

can occur and divide by the total number of possible outcomes. No experiments or data collection is 

necessary. 

What is the probability that a community college student is female? Like tossing a coin, this event 

also has two outcomes: female or male. But is ? To estimate this probability, we 

have to collect data. We can use the data from the West Coast college that we saw in Relationships 

in Categorical Data with Intro to Probability and estimate that 

. Of course, this estimate assumes this college is a 

representative sample of community colleges. Data from 2010 enrollments at Los Medanos College 

in California give a different estimate: . Neither estimate is equal 

to 0.5 because there appear to be more women than men attending community college. These are 

examples of empirical probabilities. 

Empirical probability of an event is an estimate, using data, of the likelihood that the event will 

happen. We can view the probabilities we calculated in Relationships in Categorical Data with Intro 

to Probability as empirical probabilities. 

  |  432



CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 

433  |  

http://oli.cmu.edu/
https://creativecommons.org/licenses/by/4.0


ANOTHER LOOK AT PROBABILITY (2 OF 2) 
ANOTHER LOOK AT PROBABILITY (2 OF 2)  |  434



ANOTHER LOOK AT PROBABILITY (2 OF 2) 

Learning OUTCOMES 

• Interpret (in context) a probability as a long-run relative frequency of an event. 

What Is the Relationship between Theoretical and 
Empirical Probability? 

We investigate this question in the following two activities. We use coin flipping as a first step in understanding 
the connection between these two ways of determining the probability of an event. 

A single flip of a coin has an uncertain outcome. We do not know if we will get heads or tails. If we flip 
the coin 10 times, we are not guaranteed to get 5 heads and 5 tails. So what exactly does it mean when we say 
P(heads) = 0.5? To answer this question, we use a simulation to simulate flipping a coin. 

Our goal is to understand how the empirical probability P(head) relates to the theoretical probability of 0.5. 

Activity 1: Fair Coin 

The purpose of this activity is to experiment with a simulation that simulates flipping a fair coin, and to see if 
the P(H) = 0.5. 

Open simulation in new tab 
Source: GeoGebra, license: CC BY SA 

Part (1) 

1. Make sure Coins = 1 and P(heads) = 0.5. 
2. Press the “1 Flip” button 3 times. 
3. Notice that for each flip, you will see either heads (1) or tails (0) appear in the histogram count. 
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Part (2) 

1. Press the Reset button so that the count is cleared. 
2. Make sure Coins = 1 and P(heads) = 0.5. 
3. This time press the “10 Flips” button 3 times so that you have 30 coin flips. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=284#h5p-258 

Part (3) 

1. Press the Reset button so that the count is cleared. 
2. Make sure Coins = 1 and P(heads) = 0.5. 
3. Press the Auto button and watch the count of heads and tails change. 
4. Click the Pause (II) button once Total Flips is over 1,000. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=284#h5p-259 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=284#h5p-260 

In the preceding activity, the simulation simulates flipping a fair coin. P(heads) = 0.5 with a fair coin. How 
can we tell if a coin is not fair? Theoretical probability methods cannot answer this question. The only way we 
can answer this question is to collect data as we flip the coin. 

Activity 2: Unfair Coin 

The purpose of this activity is to experiment with an activity that simulates flipping an unfair coin. 
Open simulation in new tab 
Source: GeoGebra, license: CC BY SA 

1. Make sure Coins = 1 and P(heads) = 0.2. 
2. Click the Auto button and watch the count of heads and tails change. 
3. Click the Pause (II) button once Total Flips is over 100 or so. 
4. Record the total number of Heads (1’s) and the total number of flips. 
5. Calculate P(H) (Number of heads / Total Flips) when Total Flips is about 100. 
6. Click the Auto button again to continue the flips. 
7. Click the Pause (II) once Total Flips is over 1,000 or so. 
8. Record the total number of Heads (1’s) and the total number of flips. 
9. Calculate P(H) (Number of heads / Total Flips) when Total Flips is about 1,000. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=284#h5p-261 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=284#h5p-262 

Let’s summarize what we have learned from these activities: 

• The empirical probability will approach the theoretical probability after a large number of repetitions. 
In some situations, such as in flipping an unfair coin, we cannot calculate the theoretical probability. In 
these cases, we have to depend on data. 

• There is less variability in a large number of repetitions. This means that in the long run, we will see a 
pattern, so we are more confident about estimating the probability of an event using empirical 
probability with a large number of repetitions. 
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What Do We Mean When We Say an Event Is Random or Due to 
Chance? 

In the discussion of the role of probability in the Big Picture of Statistics, we said that probability is the 
machinery that allows us to draw conclusions about a population on the basis of a random sample. To 
understand why we can trust random selection in an observational study and random assignment in an 
experiment, we need to look more closely at what we mean by random or chance behavior. 

When we say that an event is random or due to chance, we mean that the event is unpredictable in the 
short run but has a regular and predictable behavior in the long run. This is obviously true for the coin-tossing 
activity. We cannot predict whether an individual toss will be heads, but in the long run, the outcomes have a 
predictable pattern. The relative frequency of heads is very close to 0.5 for a fair coin. 

We can make probability statements only about random events. 

What Is the Connection between the Coin-Flipping Activities and 
the Discussion of Probability in the Previous Module? 

Let’s look at two probability questions that we might answer using the familiar data set from Relationships in 
Categorical Data with Intro to Probability. Recall that 6,198 of the 12,000 students at a West Coast community 
college are female. Previously, we calculated P(female) = 6,198 / 12,000 = 0.5165. What is the random event in 
this case? Let’s be very specific about the question this calculation is meant to answer. 

What is the probability that a student at the West Coast community college is a female? 

• In this case, the relative frequency 6,198 / 12,000 is the actual proportion of females at the college. This 
is like the fair coin situation. Because we know the gender distribution at the college, we can think of 
0.5165 as the theoretical probability that a randomly selected student at this particular college is a female. 
Tossing the fair coin in the simulation is like randomly selecting a student from the spreadsheet of data. 
We do not know if a randomly selected student will be female. But if we repeat this process many, many 
times, in the long run, the relative frequency of females will have a predictable pattern. The relative 
frequency will be very close to the proportion of females in the data set. 

What is the probability that a community college student in the United States is female? 

• In this case, we are using the data from the 12,000 West Coast community college students to represent 
students at all community colleges in the United States. The relative frequency is an estimate for the 
chance that a randomly selected U.S. student is female. This is like tossing the unfair coin 12,000 times 
and using the relative frequency of heads as an estimate of P(head). We do not know P(female) for all 
community colleges, just as we did not know the P(heads) with an unfair coin. But if the sample is 
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random, we can use the relative frequency of females in the sample as an estimate of P(female) in all 
community colleges. 

The main points are these: 

• We can make probability statements only about random events. 
• Probability of an event A is the relative frequency with which that event occurs in a long series of 

repetitions. 
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INTRODUCTION TO PROBABILITY RULES 

What you’ll learn to do: Reason from probability 
distributions, using probability rules, to answer probability 
questions. 

In this section, we introduce probability rules and properties. These rules can make evaluating probabilities far 
simpler and can also help catch mistakes if results are nonsensical (for example, a 140% chance is impossible). 
We revisit conditional probabilities, which are a fundamental concept in understanding how to interpret 
results from hypothesis testing. Finally, we introduce the notion of independence, joint, and marginal 
probabilities, and present a useful rule that ties these concepts together. 
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PROBABILITY RULES (1 OF 3) 

Learning OUTCOMES 

• Reason from probability distributions, using probability rules, to answer probability 

questions. 

In our previous discussions of probability, we focused on determining the probability of one event at a time. 
For example, we used two-way tables in Relationships in Categorical Data with Intro to Probability to find the 
probability that a randomly selected female student from a community college is a Health Science major. 

Now we shift our focus to describing the probabilities of all possible outcomes instead of the probability of 
just one outcome. 

We think of all possible outcomes as variable values. Each variable value has a probability. The variable values 
together with their probabilities are a probability distribution. 

Example 

Probability Distribution for Blood Type 

Consider the variable blood type. This is a categorical variable with variable values A, B, AB, or O. 

Using relative frequencies from large samples of randomly chosen individuals, we can estimate the 

probability of choosing a person with a given blood type. Using relative frequencies, the Stanford 

University’s Blood Center (bloodcenter.stanford.edu) gives the probabilities of human blood types 

in the United States as follows: 

Blood Type O A B AB 

Probability 0.45 0.41 0.10 0.04 

This table is an example of a probability distribution. Each variable value is assigned a probability. 
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Notice the following important fact about this probability distribution: 

The sum of all of the probabilities is 1. This makes sense because we have listed all the outcomes. 

Since each probability is a relative frequency, these outcomes make up 100% of the observations. 

We can use the probability distribution to answer probability questions: 

Question: People with blood type O can donate blood to people with any other blood type. 

For this reason, people with blood type O are called universal donors. What is the probability 

that a randomly selected person from the United States is a universal donor? 

Answer:P(universal donor) = P(blood type O) = 0.45. There is a 45% chance that a randomly 

selected person in the United States is a universal donor. 

Example 

Probability Distribution for Boreal Owl Eggs 

Boreal owls are common in Canada and Alaska. They are fairly small, averaging 10 inches in length 

and weighing from 4 to 6 oz. They often make their nests in woodpecker holes. The number of 

eggs in a boreal owl nest generally ranges from 4 to 6 eggs. Using relative frequencies from large 

field observations, we can estimate the probability of a nest containing a certain number of eggs. 

The variable is Boreal owl eggs in a nest. This is a quantitative variable with values 0, 1, 2, 3, 4, 5, or 

6 eggs. The probability distribution gives the probability that a nest will have from 0 to 6 eggs. 

Number of Eggs 0 1 2 3 4 5 6 

Probability 0.2 0.1 0.1 0.25 0.25 0.05 0.05 
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This table is also an example of a probability distribution. Each variable value is assigned a 

probability. 

Note: The sum of all of the probabilities is 1. This is always true for a probability distribution. 

We can use the probability distribution to answer probability questions: 

Question: 

Which is more likely: (1) To find a boreal owl nest with 3 eggs, or (2) To find a boreal owl nest 

with 4 eggs. 

Answer: Both of these events are equally likely. P(3 eggs) = P(4 eggs) = 0.25. There is a 25% 

chance that if you find a boreal owl nest, it will have 3 eggs. You are equally likely to find a 

boreal owl nest with 4 eggs. 

Notice the following important facts about probability distributions: 

• The outcomes are random events. When we randomly choose a person, we do not know their blood type. 
But there is a predictable pattern in the outcomes that is described by the relative frequencies. When we 
randomly select a boreal owl nest, we do not know how many eggs it will contain, but there is a 
predictable pattern in the outcomes that is described by the relative frequencies. 

• All outcomes are assigned a probability. 
• The probabilities are numbers between 0 and 1. This makes sense because each probability is a relative 

frequency. 
• The sum of all of the probabilities is 1. This makes sense because we have listed all the outcomes. Since 

each probability is a relative frequency, these outcomes make up 100% of the observations. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=289#h5p-263 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=289#h5p-264 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 

  |  448

https://pressbooks.cuny.edu/conceptsinstatistics/?p=289#h5p-263
https://pressbooks.cuny.edu/conceptsinstatistics/?p=289#h5p-264
http://oli.cmu.edu/
https://creativecommons.org/licenses/by/4.0


PROBABILITY RULES (2 OF 3) 
449  |  PROBABILITY RULES (2 OF 3)



PROBABILITY RULES (2 OF 3) 

Learning OUTCOMES 

• Reason from probability distributions, using probability rules, to answer probability 

questions. 

Here we continue to use probability distributions to answer probability questions. We look for some patterns 
that suggest general rules for determining probabilities. 

Example 

When Can We Add Probabilities? 

Compare these two questions. What do the solutions have in common? 

Question 1: A person with blood type A can receive blood from individuals with type A or O 

blood. What is the probability that a randomly selected person from the United States can 

donate blood to someone with type A blood? 

Blood Type O A B AB 

Probability 0.45 0.41 0.10 0.04 

Answer:P(donate to A) = P(blood type A or blood type O) = 0.45 + 0.41 = 0.86. There is an 

86% chance that a randomly selected person in the United States can donate blood to 

someone with type A blood. 

Question 2: 

What is the probability that a randomly chosen boreal owl nest will either be empty or 

contain only 1 egg? 
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Number of Eggs 0 1 2 3 4 5 6 

Probability 0.2 0.1 0.1 0.25 0.25 0.05 0.05 

Answer:P(no eggs or 1 egg) = P(no egg) + P(1 egg) = 0.2 + 0.1 = 0.3. There is a 30% chance 

that a randomly selected boreal owl nest will be empty or contain only one egg. 

What do these solutions have in common? 

In each case, we have two events and we want to find the probability that either event A or event 

B occurs. In each case, we added the probabilities. This works because the events have no 

outcomes in common. When two events have no outcomes in common, they are disjoint. 

The events “type A blood” and “type O blood” are disjoint. These events cannot both happen at the 

same time for a single person. A person cannot have both type A blood and type O blood. 

The events “no eggs” and “1 egg” are disjoint. These outcomes cannot both happen at the same 

time for a single nest. A nest cannot contain no eggs and at the same time contain 1 egg. 

If two events are disjoint, then we can add their individual probabilities. We write this fact as a rule: 

P(A or B) = P(A) + P(B) 

Comment 

We stated the addition rule as a formal rule. A rule is a concise way to summarize a general principle from 
specific examples. This is one advantage of a rule. One disadvantage of a rule is that sometimes it discourages 
us from just thinking through a problem. Students often have the experience that they misremember a rule or 
forget the conditions required for the rule to work. This leads to mistakes that we can avoid if we just think 
through the problem without worrying about rules. We encourage you to think through probability problems 
whenever possible without resorting to rules. If you use a rule, be careful to check that the situation meets the 
conditions required for using the rule. 

This addition rule for probabilities only works when the events are disjoint. If the events are not disjoint, the 
rule does not work. Here is an example of when the rule does not work because the events are not disjoint. 
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Example 

When Can We NOT Add Probabilities? 

Arts-Sci Bus-Econ Info 
Tech 

Health 
Science 

Graphics 
Design 

Culinary 
Arts 

Row 
Totals 

Female 4,660 435 494 421 105 83 6,198 

Male 4,334 490 564 223 97 94 5,802 

Column 
Totals 8,994 925 1,058 644 202 177 12,000 

Question: 

What is the probability that a randomly selected student is either a Health Science major or a 

female? 

Answer: There are 644 Health Science majors and 6,198 females, but 421 students are 

counted twice because they are both Health Science majors and female. We must subtract 

these students before calculating the relative frequency: 

Now let’s calculate the individual probabilities and see if the rule works: 

Main point:P(Health Science or female) ≠ P(Health Science) + P(female). In other words, the 

addition rule does not work here. Why not? The two events “Health Science” and “female” 

are not disjoint. The data set contains people who are both in the Health Science program 

and female. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=290#h5p-265 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=290#h5p-266 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=290#h5p-267 

Example 

Do We Ever Subtract Probabilities? 

Compare these two questions. What do the solutions have in common? 
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Question 1: People with blood type O can donate blood to people with any other blood 

type. For this reason, people with blood type O are called universal donors. What is the 

probability that a randomly selected person from the United States is not a universal donor? 

Blood Type O A B AB 

Probability 0.45 0.41 0.10 0.04 

Answer:P(NOT a universal donor) = P(blood type is not type O) = P(blood type A, B, or AB) 

= 0.41 + 0.10 + 0.04 = 0.55. There is a 55% chance that a randomly selected person in the 

United States is not a universal donor. 

Here is another way we can solve this problem. We can use the idea that all of the probabilities 

together make up 100% of the possibilities. If we add up all the probabilities in the table, we get 1. 

We can subtract the probability that someone is type O from 1 to find the probability that the 

person is not type O: 

P(NOT a universal donor) = P(blood type is not type O) = 1 – P(type O) = 1 – 0.45 = 0.55 

Question 2: 

What is the probability that a randomly selected boreal owl nest is not empty? 

Number of Eggs 0 1 2 3 4 5 6 

Probability 0.2 0.1 0.1 0.25 0.25 0.05 0.05 

Answer:P(nest is not empty) = P(at least one egg) = P(1, 2, 3, 4, 5, or 6 eggs) = 0.1 + 0.1 + 0.25 

+ 0.25 + 0.05 + 0.05 = 0.80. There is an 80% chance that the nest you observe has at least 

one egg. 

Here is another approach: 

P(nest is not empty) = P(at least one egg) = 1 – P(0 eggs) = 1 – 0.2 = 0.8. 

What do these solutions have in common? 

In each case, we have an event that can be interpreted as a “not” statement. The probability that a 

person is not a universal donor means the person is not type O. The probability that a boreal owl 

nest is empty means the nest does not contain 0 eggs. In each case, the easy way to compute the 

probability is to use the complement event. The complement of event A is the event composed of 

outcomes that are “not A.” In our examples, the complement of “type O blood” is the event 
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composed of “blood types A, B, or AB.” The complement of “0 eggs” is the event composed of “1, 2, 

3, 4, 5, or 6 eggs.” When two sets of events are complements, their probabilities add to 1. 

When one event is the complement of another, then we can use the complement rule: 

P(not A) = 1 – P(A) 

We can use this rule to find probabilities only when the two events are complements. Two events 

are complements when their probabilities add to 1. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=290#h5p-268 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=290#h5p-269 
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PROBABILITY RULES (3 OF 3) 

Learning OUTCOMES 

• Use conditional probability to identify independent events. 

Independence and Conditional Probability 

Recall that in the previous module, Relationships in Categorical Data with Intro to Probability, we introduced 
the idea of the conditional probability of an event. 

Here are some examples: 

• the probability that a randomly selected female college student is in the Health Science program: 
P(Health Science | female) 

• P(a person is not a drug user given that the person had a positive test result) = P(not a drug 
user | positive test result) 

Now we ask the question, How can we determine if two events are independent? 

Example 

Identifying Independent Events 

Is enrollment in the Health Science program independent of whether a student is female? Or is 

there a relationship between these two events? 

457  |  



Arts-Sci Bus-Econ Info 
Tech 

Health 
Science 

Graphics 
Design 

Culinary 
Arts 

Row 
Totals 

Female 4,660 435 494 421 105 83 6,198 

Male 4,334 490 564 223 97 94 5,802 

Column 
Totals 8,994 925 1,058 644 202 177 12,000 

To answer this question, we compare the probability that a randomly selected student is a Health 

Science major with the probability that a randomly selected female student is a Health Science 

major. If these two probabilities are the same (or very close), we say that the events are 

independent. In other words, independence means that being female does not affect the likelihood 

of enrollment in a Health Science program. 

To answer this question, we compare: 

• the unconditional probability: P(Health Sciences) 

• the conditional probability: P(Health Sciences | female) 

If these probabilities are equal (or at least close to equal), then we can conclude that enrollment in 

Health Sciences is independent of being a female. If the probabilities are substantially different, 

then we say the variables are dependent. 

Both conditional and unconditional probabilities are small; however, 0.068 is relatively large 

compared to 0.054. The ratio of the two numbers is 0.068 / 0.054 = 1.25. So the conditional 

probability is 25% larger than the unconditional probability. It is much more likely that a randomly 

selected female student is in the Health Science program than that a randomly selected student, 

without regard for gender, is in the Health Science program. There is a large enough difference to 

suggest a relationship between being female and being enrolled in the Health Science program, so 

these events are dependent. 

Comment: 

To determine if enrollment in the Health Science program is independent of whether a student is female, we 
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can also compare the probability that a student is female with the probability that a Health Science student is 
female. 

We see again that the probabilities are not equal. Equal probabilities will have a ratio of one. The ratio is 

, which is not close to one. It is much more likely that a randomly selected Health Science 

student is female than that a randomly selected student is female. This is another way to see that these events 
are dependent. 

To summarize: 
If P(A | B) =  P(A), then the two events A and B are independent.To say two events are independent means 

that the occurrence of one event makes it neither more nor less probable that the other occurs. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=292#h5p-270 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=292#h5p-271 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=292#h5p-272 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=292#h5p-273 

In Relationships in Categorical Data with Intro to Probability, we explored marginal, conditional, and joint 
probabilities. We now develop a useful rule that relates marginal, conditional, and joint probabilities. 

Example 

A Rule That Relates Joint, Marginal, and Conditional 
Probabilities 

Let’s consider our body image two-way table. Here are three probabilities we calculated earlier: 

Marginal probability: 

Conditional probability: 

Joint probability: 

Note that these three probabilities only use three numbers from the table: 560, 855, and 1,200. (We 

grayed out the rest of the table so we can focus on these three numbers.) 
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Now observe what happens if we multiply the marginal and conditional probabilities from above. 

The result 560 / 1200 is exactly the value we found for the joint probability. 

When we write this relationship as an equation, we have an example of a general rule that relates 

joint, marginal, and conditional probabilities. 

In words, we could say: 

• The joint probability equals the product of the marginal and conditional probabilities 

This is a general relationship that is always true. In general, if A and B are two events, then 

P(A and B) = P (A) · P(B | A)This rule is always true. It has no conditions. It always works. 

When the events are independent, then P (B | A) = P(B). So our rule becomes 

P(A and B) = P(A) · P(B)This version of the rule only works when the events are independent. For 

this reason, some people use this relationship to identify independent events. They reason this 

way: 

If P(A and B) = P (A) ·P(B) is true, then the events are independent. 

Comment: 

Here we want to remind you that it is sometimes easier to think through probability problems without 
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worrying about rules. This is particularly easy to do when you have a table of data. But if you use a rule, be 
careful that you check the conditions required for using the rule. 

Example 

Relating Marginal, Conditional, and Joint Probabilities 

What is the probability that a student is both a male and in the Info Tech program? 

There are two ways to figure this out: 

(1) Just use the table to find the joint probability: 

(2) Or use the rule: 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=292#h5p-274 

All of the examples of independent events that we have encountered thus far have involved two-way tables. 
The next example illustrates how this concept can be used in another context. 
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Example 

A Coin Experiment 

Consider the following simple experiment. You and a friend each take out a coin and flip it. What is 

the probability that both coins come up heads? 

Let’s start by listing what we know. There are two events, each with probability ½. 

P(your coin comes up heads) = ½ 

P(your friend’s coin comes up heads) = ½ 

We also know that these two events are independent, since the probability of getting heads on 

either coin is in no way affected by the result of the other coin toss. 

We are therefore justified in simply multiplying the individual probabilities: 

(½) (½) = ¼ 

Conclusion: There is a 1 in 4 chance that both coins will come up heads. 

If we extended this experiment to three friends, then we would have three independent events. 

Again we would multiply the individual probabilities: 

(½) (½) (½) = ⅛ 

Conclusion: There is a 1 in 8 chance that all three coins will come up heads. 
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INTRODUCTION TO DISCRETE 
PROBABILITY DISTRIBUTION 

What you’ll learn to do: Use probability distributions for 
discrete and continuous random variables to estimate 
probabilities and identify unusual events. 

In studying a probability experiment, it is often useful 
to work with quantitative values to represent outcomes. 
These quantitative values associated to outcomes are 
called random variables. In this section, we explore 
random variables that take on numeric values that can be 
listed.  For example, number of books is a discrete random 
variable. On the other hand, hair color is not a random 
variable because hair color is not numeric. Also, any 
decimal between 0 and 1 is not discrete because we cannot 
list out all the decimals. In analyzing real life data, we will 
apply fundamental concepts about discrete probability distributions to estimate likelihoods and draw 
inferences. 
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DISCRETE RANDOM VARIABLES (1 OF 5) 

Learning OUTCOMES 

• Distinguish between discrete random variables and continuous random variables. 

In our previous discussion of probability distributions, we did not distinguish between probability 
distributions for categorical and quantitative variables. Our focus was on developing the rules of probability. 
We looked at the probability distribution for the categorical variable blood type. We also looked at the 
probability distribution for the quantitative variable number of boreal owl eggs in a nest. The probability rules 
apply in both situations. 

Now we focus more closely on probability distributions for quantitative variables. These distributions will 
be very important when we study statistical inference. Examples of such variables are: 

• number of boreal owl eggs in a nest 
• number of times a college student changes major 
• shoe size 
• weight of a student 
• foot lengths for adults 

When the outcomes are quantitative, we call the variable a random variable. In this section, we discuss the 
probability distributions of discrete random variables and random variables. 

Discrete random variables have numeric values that can be listed and often can be counted. For example, 
the variable number of boreal owl eggs in a nest is a discrete random variable. Shoe size is also a discrete random 
variable. Blood type is not a discrete random variable because it is categorical. 

Continuous random variables have numeric values that can be any number in an interval. For example, 
the (exact) weight of a person is a continuous random variable. Foot length is also a continuous random 
variable. Continuous random variables are often measurements, such as weight or length. We view 
measurements as continuous even though the limitations of a ruler or a scale give discrete measurements. For 
example, imagine weighing yourself on a digital scale that gives weights to the nearest tenth of a pound. You 
will get measurements that are rounded to the nearest tenth, such as 152.3 or 165.8. Actual weights could 
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theoretically be any value in an interval, such as 152.345612555 or something like that. So with a discrete 
variable, you can count the possible values for the variable without rounding off. With a continuous variable, 
you cannot. 

Comment 

The word random here means that the outcomes are uncertain in the short run but have a regular distribution 
or predictable pattern in the long run. In statistics, we reserve the term random variable for quantitative 
variables. This can be a bit confusing because categorical variables can also describe random outcomes. 

Now we investigate the probability distributions for discrete random variables. 
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DISCRETE RANDOM VARIABLES (2 OF 5) 

Learning OUTCOMES 

• Use probability distributions for discrete and continuous random variables to estimate 

probabilities and identify unusual events. 

Probability Distribution for Discrete Random Variables 

In this section, we work with probability distributions for discrete random variables. Here is an example: 

Example 

Consider the random variable the number of times a student changes major. 

(For convenience, it is common practice to say: Let X be the random variable number of changes in 

major, or X = number of changes in major, so that from this point we can simply refer to X, with the 

understanding of what it represents.) 

Here is the probability distribution of the random variable X: 

Here is what it tells us: 

For a randomly selected student, we cannot predict how many times he or she will change majors, 

but there is a predictable pattern described by the probability distribution (or model) above. So this 

is a random variable for which we are assuming the values range from 0 to 8. (In reality, a negligible 

proportion of students change majors more than 8 times.) The table provides a way to assign 

probabilities to outcomes. Note that if we add up the probabilities of all possible outcomes (0.135 + 
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0.271 + … + 0.002), we get exactly 1, which is not surprising (because one of the possible outcomes 

0, 1, … , 8 will occur for sure). 

Another way to represent the probability distribution of a random variable is with a probability 

histogram. 

The horizontal axis accounts for the range of all possible values of the random variable (in our case, 

0–8), and the vertical axis represents the probabilities of those values. 

The heights of the bars add to 1, which is not surprising since the heights represent probabilities. 

Let’s summarize the features of a probability distribution: 

• The outcomes described by the model are random. This means that individual outcomes are uncertain, 
but there is a regular, predictable distribution of outcomes in a large number of repetitions. 

• The model provides a way of assigning probabilities to all possible outcomes. 
• The probability of each possible outcome can be viewed as the relative frequency of the outcome in a 

large number of repetitions, so like any other probability, it can be any value between 0 and 1. 
• The sum of the probabilities of all possible outcomes must be 1. 

Comment 

Where do these probability distributions come from? Recall that probability distributions can come from data, 
such as the distribution of boreal owl eggs. Scientists observe thousands of nests and record the number of 
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eggs in each nest. Then they calculate the relative frequency of each outcome. The relative frequency of each 
outcome represents the empirical probability for that outcome. 

We can also use a mathematical formula to represent a probability distribution. In this case, we make 
assumptions about how outcomes will be distributed. In other words, we use a mathematical formula to 
describe the predicted relative frequencies for all possible outcomes. We do not look at mathematical formulas 
for probability distributions in this course, but we want you to be aware that not all probability distributions 
come from data. 

Example 

Recall the probability distribution of the random variable X = number of changes in major: 

Let’s see what kinds of probability questions we can answer using it. 

1. What is the probability that a college student will change majors at most once? 

The phrase “at most once” means either the student never changes majors (X = 0) or the student 

changes majors once (X = 1). Therefore, to find this probability, we need to add the probabilities 

that are highlighted in the table: 

So, 

P(a college student changes majors at most once) = P(X = 0) + P(X = 1) = 0.135 + 0.271 = 0.406 

The probability that a randomly selected college student will change majors at most once is about 

0.406. We can also say that about 40.6% of the time, a randomly selected college student will 

change majors at most once. 

2. John’s parents are concerned that he has decided to change his major for the second time. John 

claims that he is not unusual. What is the probability that a randomly selected college student will 

change his major as often as or more often than John? 

To answer the question about John, we need know the probability that a randomly selected 

student will change his major 2 or more times. We need to add together the probabilities shaded in 

the table. 
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P(change major 2 or more times) = P(X = 2) + P(X = 3) + … + P(X = 8) = 0.594 

Here is another way to figure this out. We can use the idea that all of the probabilities together 

make up 100% of the possibilities. So if we add up all the probabilities in the table we should get 1. 

Now if we figure out the probability that someone changes majors 0 or 1 times, we can just 

subtract this from 1 to find the probability that someone changes majors 2 or more times. As we 

learned previously, this is the complement rule. 

P(change major 2 or more times) = 1 – [P(X = 0) + P(X = 1)] = 1 – [0.135 + 0.271] = 0.594 

Do you think John has given a convincing argument that he is not unusual? Yes! Fifty-nine percent 

of the time, a college student will change majors as often as or more often than John did. Stating 

this same result in terms of probability, we might say, “There is a 59% probability that a randomly 

selected college student will change majors 2 or more times while in college.” 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=300#h5p-275 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=300#h5p-276 
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We found that changing a major 2 or more times is not very unusual, since it happens about 59% 

of the time. So… 

3. How often would John need to change his major to be considered unusual? 

One way to answer this question is to just a make a judgment call about what we might consider 

“unusual” based on the table. For example, we might notice that the probability that a student will 

change majors 5 or more times is about 5%. 

P(change majors 5 or more times) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8) 

= 0.036 + 0.012 + 0.003 + 0.002 = 0.053 

An event that occurs only 5% of the time is pretty unusual. 

Are there other ways to more definitively determine what might be considered unusual? Well, we might 
use a measure of center, such as the mean, to determine a “typical” number of times that students change 
majors. Values that are 2 standard deviations above the mean could be used to identify unusual behavior. We 
will come back to this question after we have developed an understanding of mean and standard deviation for 
a probability distribution. 
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DISCRETE RANDOM VARIABLES (3 OF 5) 

Learning OUTCOMES 

• Use probability distributions for discrete and continuous random variables to estimate 

probabilities and identify unusual events. 

Mean and Standard Deviation of a Discrete Random 
Variable 

We now focus on the mean and standard deviation of a discrete random variable. We discuss how to calculate 
these measures of center and spread for this type of probability distribution, but in general we will use 
technology to do these calculations. 

Example 

The Mean of a Discrete Random Variable 

At Rushmore Community College, there have been complaints about how long it takes to get food 

from the college cafeteria. In response, a study was conducted to record the total amount of time 

students had to wait to get their food. The following table gives the total times (rounded to the 

nearest 5 minutes) to get food for 200 randomly selected students. 

Here is the frequency table. 

Time (minutes) 5 10 15 20 25 

Number of students 30 52 62 40 16 

Using this data, we can create a probability distribution for the random variable X = “time to get 
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food.” As we have done before, we divide each frequency (count) by the total number of 

observations. For example, to calculate the probability that a student will have to wait 10 minutes 

to get their food we divide: (the number of students in the sample that waited 10 minutes) by (the 

total number of students in the sample) = 52 / 200 = 0.26. 

X = Time (minutes) 5 10 15 20 25 

P(X) 30 / 200 = 0.15 52 / 200 = 0.26 62 / 200 = 0.31 40 / 200 = 0.20 16 / 200 = 0.08 

Here is the corresponding probability histogram: 

A comment on probability histograms 

In this probability histogram, the area, instead of the height, is the probability. In general, when we 

work with probability histograms, the area will represent the probability, so we will not worry 

about the units on the y-axis. Since the area represents the probabilities, the total area is 1. 

Because in this case we have the actual data in the first table, we start by using that table of actual 

counts to calculate the mean. However, usually all we have is the probability distribution, so we will 

also consider how to calculate the mean directly from this information alone. 

Calculating the Mean from the Frequency Table 

Time (minutes) 5 10 15 20 25 

Number of students 30 52 62 40 16 
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We have 200 observations that are summarized in this table. We have 30 students with a time of 5 

minutes, 52 students with a time of 10 minutes, 62 students with a time of 15 minutes, and so on. 

To calculate the mean (that is the average), we have to add 30 fives + 52 tens + 62 fifteens + 40 

twenties + 16 twenty-fives and then divide by 200. Here is that calculation: 

 

So the mean time for students to get their food in the cafeteria is 14 minutes. 

Calculating the Mean from the Probability Distribution 

Now let’s take a closer look at the calculation we just did. 

Notice that the large fraction on the left could be broken up into a sum of five smaller fractions all 

with the denominator 200: 

Okay, we are almost there. The last thing to do is rewrite each of these fractions like this: 

Here is the same equation with the fractions expressed as decimals: 

Look closely at the terms we are adding. In each case, we have the product of one of the possible 

values of X and its corresponding probability: 

X = Time (minutes) 5 10 15 20 25 

P(X) 30 / 200 = 0.15 52 / 200 = 0.26 62 / 200 = 0.31 40 / 200 = 0.20 16 / 200 = 0.08 

As we can see, the mean is just a weighted average. That is, the mean is the weighted sum of all 

the possible values of the random variable X, where each value is weighted by its probability. 
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Comment 

Why Is the Mean a Weighted Average? 

The mean of a discrete random variable X should give us a measure of the long-run average value for X. It 
therefore makes sense to count more heavily those values of X that have a high probability, because they are 
more likely to occur and will consequently influence the long-run average. On the other hand, those values 
of X with low probability will not occur very often, so they will have little effect on the long-run average. It 
therefore makes sense to not give them much weight in our calculation. 

Formula for the Mean of a Discrete Random Variable 

Earlier in the course, when we calculated the mean of a data set, we used the symbol  (x-bar) to represent that 
value. We do not use  to represent the mean of a random variable; instead we use  (pronounced “mu-sub-
x”). 

Here is the formula that we have come up with for the mean of a discrete random variable. Note that 
represents the probability of x, where x is a value of the random variable X. 

Another term often used to describe the mean is expected value. It is a useful term because it reminds us 
that the mean of a random variable is not calculated on a fixed data set. Rather, the mean (expected value) is a 
measure of the expected long-term behavior of the random variable. 

Try It 

Drivers entering the short-term parking facility at an airport are given the option to purchase a 

parking permit for one of four possible time periods: ½ hour, 1 hour, 1½ hours, or 2 hours. Thus, for 
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each driver who enters the parking facility, we can consider their choice of parking time as a 

discrete random variable. In this case, the random variable X has four possible values: 0.5, 1, 1.5, and 

2. 

Assume that the probability distribution for X is given by the following table. 

For example, reading from this table, it appears that there is a 15% chance that the next driver 

entering the parking facility will opt for a ½-hour permit. In the probability histogram, the area of 

each rectangle (not the height) is the probability of the corresponding x-value occurring. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=304#h5p-277 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=304#h5p-278 
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DISCRETE RANDOM VARIABLES (4 OF 5) 

Learning OUTCOMES 

• Use probability distributions for discrete and continuous random variables to estimate 

probabilities and identify unusual events. 

Standard Deviation for a Discrete Random Variable 

The mean of a discrete random variable gives us a measure of the long-run average but it gives us no 
information at all about how much variability to expect. For example, earlier we found that the average cafeteria 
wait time at Rushmore Community College was 14 minutes. Put in terms of our random variable, this means 
over the long run, if we continued to keep track of wait times for students entering the cafeteria, their times 
would average 14 minutes. Some students would get their food in less than 14 minutes, and some would have 
to wait longer. 

Is that all we need to know? Suppose on the one hand the average time was 14 minutes, but we knew that 
it was most likely that times would range from 8 to 20 minutes. Compare that to a situation where again the 
average time was 14 minutes, but it was most likely that times would range only from 13 to 15 minutes. That 
would give us a different picture of what the problem at the cafeteria might be. What we need is a measure 
of how much variability to expect in a random variable X over the long run. The standard deviation is that 
measure. 

Just as we need both the mean and standard deviation to get a full picture of the shape of a data set, we need 
both the mean and standard deviation of a random variable to understand its likely long-term behavior. 

In Summarizing Data Graphically and Numerically, we used the following formula to compute the 
standard deviation of a data set. 
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As you may recall, the most important part of this formula is the term inside the square root, which we call 
the average of the squares of the deviations from the mean. 

 
As we will see, the formula for the standard deviation for a discrete random variable has a lot in common 

with this formula. 
Here is the formula for the standard deviation of a discrete random variable. Note that  represents the 

probability of x, where x is a value of the random variable X. And  again stands for the mean of X. 

 
Again, we focus on the term inside the square root: 

 
The term  here represents the deviation of each value of the random variable X from the mean 
, just as the term  represents the deviation of each observation of the data set from the mean . 

In both cases, we proceed to sum the squares of these deviations. In the case of a data set, we divide by n 
− 1 to find the average squared deviation. However, in the case of a discrete random variable, we again use a 
weighted average. Why? Because we don’t want to give undue weight to values of X that are unlikely to occur. 
So those values of X, even if far from the mean , will not contribute much to the standard deviation if their 
probability is low. On the other hand, values of X with large probabilities will count more in our calculation of 
the standard deviation of X. 

Example 

Cafeteria Wait Times 

Let’s revisit the problem about wait times in the cafeteria at Rushmore Community College. Recall 

the following probability distribution. 
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X = Time (minutes) 5 10 15 20 25 

P(X) 0.15 0.26 0.31 0.20 0.08 

On the previous page, we found that the average wait time is 14 minutes. Now we will compute 

the standard deviation of wait times and think a bit about what it tells us. 

We start by computing the squared deviations from the mean and weighting them by the 

probability. For the first value of X, we have 

 

Performing the same operation on the next three values of X will give us 

 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=305#h5p-279 

The next step of the formula is to add up the weighted square deviations from the mean, as 

follows: 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=305#h5p-280 

Recall that in Summarizing Data Graphically and Numerically we used the standard deviation of a 
quantitative data set to give a range of typical values. This range of typical values was formed by blocking off an 
interval 1 standard deviation to the right and left of the mean. In other words, the range of typical values was 

. Exactly the same thing can be done in the current context of random variables. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=305#h5p-281 
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DISCRETE RANDOM VARIABLES (5 OF 5) 

Learning OUTCOMES 

• Use probability distributions for discrete and continuous random variables to estimate 

probabilities and identify unusual events. 

Here is another example of how to use the mean and standard deviation of a discrete random variable to 
identify unusual values for a random variable. 

Example 

Changing Majors 

Here we have again the probability distribution of the number of changes in major. 

X 0 1 2 3 4 5 6 7 8 

P(X) 0.135 0.271 0.271 0.180 0.090 0.036 0.012 0.003 0.002 

How often do we expect a college student to change majors? 

This question is asking for the expected value, which is the mean of the probability distribution. So 

we calculate the weighted average, as before: 

What is the standard deviation of the probability distribution? 

We have drawn lines to show the mean and 1 standard deviation above and below the mean. 
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Recall that earlier, we discussed what would be considered an unusual (and not unusual) number 

of changes in major, and we used probability calculations to assess that. For example, we found 

that changing majors 5 or more times occurs only about 5% of the time and therefore can be 

considered unusual. 

Another way to think about defining “unusual” is to look at outcomes relative to the mean. We 

might consider outcomes more than 2 standard deviations above the mean as unusual. 

What values are more than 2 standard deviations above the mean of 2? 

Mean + 2 (standard deviation) = , which rounds to 5. 

We conclude from this line of reasoning that a college student who changes majors 5 or more times 

is “unusual.” 

In Summarizing Data Graphically and Numerically, we used the standard deviation to identify usual, 

or typical, values. We said that a typical range of values falls within 1 standard deviation of the 

mean. We can use a similar idea here. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=313#h5p-282 

Example 

Detecting Fraud 

Legitimate records often display a surprising pattern that is not present in faked tax returns or other 

fraudulent accounting records. In legitimate records, the distribution of first digits can be modeled 

using Benford’s law. For example, suppose the total income recorded on a tax return is $20,712. The 

first digit is 2. Now we examine a very large number of tax returns and record the first digit of total 

income for all of the returns. The relative frequency of each first digit will behave according to 

Benford’s law. 

Benford’s law can also be described using a mathematical formula, but we will not go into that here. 

Instead, let’s double-check that this distribution meets the criteria for a probability distribution of a 

discrete random variable. For a randomly selected tax return, we cannot predict what the first digit 

will be, but the first digits behave according to a predictable pattern described by Benford’s law. The 

model assigns probabilities to all possible values for a first digit (notice that the first digit cannot be 

zero). All possible outcomes taken together have a probability of 1. You can verify this by adding 

together the probabilities in the table. 

Here is the probability distribution for first digits based on Benford’s law shown in a histogram. The 

mean is approximately 3.4, with a standard deviation of about 2.5 (calculations not shown). 
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Now, let’s compare this distribution to real data. 

The second line in the following table is the probability distribution for the first significant digit in true 

tax data collected by Mark Nigrini from 169,662 IRS model files. You can see that relative frequencies 

of first digits in the legitimate tax records follow Benford’s law very closely. 

By comparison, here is the probability distribution for first digits in fraudulent tax records from a study 

of fraudulent cash disbursement and payroll expenditures conducted in 1995 by the district attorney’s 

office in Kings County, New York. For fraudulent data, the mean is approximately 5.2, with a standard 

deviation of about 0.9. 

Obviously, the relative frequencies of first digits from the fraudulent data do not follow Benford’s law 

(shown again below). The distributions have very different shapes, means, and standard deviations. 
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Compared to legitimate data, in fraudulent data, we are much more likely to see numbers with a first 

digit of 5 and much less likely to see numbers with a first digit of 1, 2, or 3. 

Comment 

When we compare the two distributions above, we can get a better understanding of the standard 

deviation of a random variable. The distribution in which it is more likely to find values that are 

further from the mean will have a larger standard deviation. 

Likewise, the distribution in which it is less likely to find values that are further from the mean will 

have a smaller standard deviation. 

In the fraudulent distribution, values like 1 or 2 that are far from the mean are very unlikely. On the 

other hand, in the Benford’s law distribution, the values 1 and 2 are quite likely. Indeed, the 

standard deviation of the Benford law is 2.5, which is larger than the standard deviation of 0.9 in 

the fraudulent distribution. 

Try It 

Use the following histograms to answer the activity question: 
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An interactive H5P element has been excluded from this version of the text. You can view it online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=313#h5p-283 

Let’s Summarize 

• The probability of an event is a measure of the likelihood that the event occurs. 

• Probabilities are always between 0 and 1. The closer the probability is to 0, the less likely the 

event is to occur. The closer the probability is to 1, the more likely the event is to occur. 

• The two ways of determining probabilities are empirical and theoretical. 

◦ Empirical methods use a series of trials that produce outcomes that cannot be 

predicted in advance (hence the uncertainty). The probability of an event is 

approximated by the relative frequency of the event. 

◦ Theoretical methods use the nature of the situation to determine probabilities. 
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Probability rules allow us to calculate theoretical probabilities. 

• Some common probability rules: 

◦ The probability of the complement of an event A can be found by subtracting the 

probability of A from 1: P(not A) = 1 – P(A) 

◦ Events are called disjoint or mutually exclusive if they have no events in common. If A 

and B are disjoint events, then P(A or B) = P(A) + P(B). 

◦ When the knowledge of the occurrence of one event A does not affect the probability 

of another event B, we say the events are independent. If A and B are independent 

events, then P(A and B) = P(A) ·P(B). 

• When we have a quantitative variable with outcomes that occur as a result of some random 

process (e.g., rolling a die, choosing a person at random), we call it a random variable. 

• There are two types of random variables: 

◦ Discrete random variables have numeric values that can be listed and often can be 

counted. 

◦ Continuous random variables can take any value in an interval and are often 

measurements. This type of random variable will be discussed in section 6.2. 

• A probability distribution of a random variable tells us the probabilities of all the possible 

outcomes (for discrete random variables) of the variable or ranges of values (for continuous 

random variables). A probability distribution shows us the regular, predictable distribution of 

outcomes in a large number of repetitions of a random variable. 

• For a discrete random variable, the probabilities of values are areas of the corresponding 

regions of the probability histogram for the variable. 
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INTRODUCTION TO CONTINUOUS 
PROBABILITY DISTRIBUTION 

What you’ll learn to do: Use a probability distribution for a 
continuous random variable to estimate probabilities and 
identify unusual events. 

In the last section, we studied discrete (listable) 
random variables and their distributions. Now we 
explore continuous (decimal valued) random 
variables that can take on values anywhere in an 
interval. For example, a person’s exact weight 
without rounding is a continuous random variable. 
If rounded to the nearest pound, weight is a discrete 
random variable. Decimal valued numbers arise 
often in real life, often in measuring things such as 
weight or length. To best study real life data that has 
values lying all over an interval, we need to build a solid foundation in continuous probability distributions. 
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CONTINUOUS PROBABILITY DISTRIBUTION 
(1 OF 2) 

Learning OUTCOMES 

• Use a probability distribution for a continuous random variable to estimate probabilities and 

identify unusual events. 

In the previous section, we learned about discrete probability distributions. We used both probability tables 
and probability histograms to display these distributions. In this section, we shift our focus from discrete to 
continuous random variables. We start by looking at the probability distribution of a discrete random variable 
and use it to introduce our first example of a probability distribution for a continuous random variable. 

Example 

Shoe Size 

Let X = the shoe size of an adult male. X is a discrete random variable, since shoe sizes can only be 

whole and half number values, nothing in between. For this example we will consider shoe sizes 

from 6.5 to 15.5. So the possible values of X are 6.5, 7.0, 7.5, 8.0, and so on, up to and including 15.5. 

Here is the probability table for X: 

X 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 

P(X) 0.001 0.003 0.007 0.018 0.034 0.054 0.080 0.113 0.127 0.134 0.122 0.107 

X 12.5 13 13.5 14 14.5 15 15.5 

P(X) 0.085 0.052 0.032 0.016 0.009 0.004 0.002 
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And here is the probability histogram that corresponds to the table. 

As is always the case for probability histograms, the area of the rectangle centered above each 

value is equal to the corresponding probability. For example, in the preceding table, we see that the 

probability for X = 12 is 0.107. 

In the probability histogram, the rectangle centered above 12 has area = 0.107. 

We write this probability as P(X = 12) = 0.107. 

And finally, as is the case for all probability histograms, because the sum of the probabilities of all 

possible outcomes must add up to 1, the sums of the areas of all of the rectangles shown must also 

add up to 1. 

Now we can find the probability of shoe size taking a value in any interval just by finding the area 

of the rectangles over that interval. For instance, the area of the rectangles up to and including 9 

shows the probability of having a shoe size less than or equal to 9. 
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We can find this probability (area) from the table by adding together the probabilities for shoe sizes 

6.5, 7.0, 7.5, 8.0, 8.5 and 9. Here is that calculation: 

0.001 + 0.003 + 0.007 + 0.018 + 0.034 + 0.054 = 0.117Total area of the six green rectangles = 0.117 = 

probability of shoe size less than or equal to 9. We write this probability as P (X ≤ 9) = 0.117. 

Recall that for a discrete random variable like shoe size, the probability is affected by whether or 

not we include the end point of the interval. For example, the area – and corresponding probability 

– is reduced if we consider only shoe sizes strictly less than 9: 
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This time when we add the probabilities from the table, we exclude the probability for shoe size 9 

and just add together the probabilities for shoe sizes 6.5, 7.0, 7.5, 8.0, and 8.5: 

0.001 + 0.003 + 0.007 + 0.018 + 0.034 = 0.063 

Total area of the five rectangles in green = 0.063 = probability of shoe size less than 9. We write this 

probability as 

P(X < 9) = 0.063 

Spotlight on Inequality Notation 

Here is a review of inequality notation: 

The symbol “<”means “less than” 

• Here is a correct use of this symbol: 3 < 12. We read this left to right as 3 is less than 12. 

• You can think of the “less than” symbol as an arrow pointing to the smaller number. 

• Some students remember the “less than” symbol from elementary school as a hungry 

alligator that is eating the larger number: 

• X < 12 means X is any number less than 12. If X represents shoe sizes, this includes whole 

and half sizes smaller than size 12. 

• P(X < 12) is the probability that X is less than 12. 

The symbol “≤”means “less than or equal to” 

• X ≤ 12 means X can be 12 or any number less than 12. If X is shoe sizes, this includes size 12 

as well as whole and half sizes less than size 12. 

• We often say “at most 12” to indicate X ≤ 12. 

• P(X ≤ 12) is the probability that X is 12 or less than 12. 
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The symbol “>”means “greater than” 

• Here is a correct use of this symbol: 15 > 12. We read this left to right as 15 is greater than 

12. 

• You can also think of the “greater than” symbol as an arrow pointing (as before) to the 

smaller number. 

• Or you can use the hungry alligator idea. The hungry alligator that is still eating the larger 

number: 

• X > 12 means X is any number greater than 12. If X is shoe sizes, this includes whole and 

half sizes larger than size 12. 

• P(X > 12) is the probability that X is greater than 12. 

The symbol “≥” means “greater than or equal to” 

• X ≥ 12 means X can be 12 or any number greater than 12. If X is shoe sizes, this includes 

size 12 as well as whole and half sizes greater than size 12. 

• We often say “at least 12” to indicate X ≥ 12. 

• P(X ≥ 12) is the probability that X is 12 or greater than 12. 

To indicate an interval we combine “less than” and “greater than” 
symbols: 

• To indicate the interval between 9 and 12, we write 9 < X < 12. This interval says “ 9 is less 

than X and X is also less than 12.” So this interval includes numbers greater than 9 but 

also less than 12. For example, 10 is in this interval but 13 is not. Also, 9 and 12 are not in 

this interval. 

• P(9 < X < 12) is the probability that X is between 9 and 12. 

• P(9 ≤ X ≤ 12) is the probability that X is the same interval except that the interval also 

includes 9 and 12. 
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Transition to Continuous Random Variables 

Now we will make the transition from discrete to continuous random variables. Instead of shoe size, let’s think 
about foot length. Unlike shoe size, this variable is not limited to distinct, separate values, because foot lengths 
can take any value over a continuous range of possibilities. In other words, foot length, unlike shoe size, can be 
measured as precisely as we want to measure it. For example, we can measure foot length to the nearest inch, 
the nearest half inch, the nearest quarter of an inch, the nearest tenth of an inch, etc. Therefore, foot length is 
a continuous random variable. 

What happens to the probability histogram when we measure foot length with more precision? When we 
increase the precision of the measurement, we will have a larger number of bins in our histogram. This makes 
sense because each bin contains measurements that fall within a smaller interval of values. For example, if we 
measure foot lengths in inches, one bin will contain measurements from 6-inches up to 7-inches. But if we 
measure foot lengths to the nearest half-inch, then we now have two bins: one bin with lengths from 6 up to 
6.5-inches and the next bin with lengths from 6.5 up to 7-inches. 

You can use the following simulation to see what happens to the probability histogram as the width of 
intervals decrease. Change the interval width by clicking on 0.5 in., 0.25 in., or 0.1 in. 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=321 

At the bottom of the simulation is an option to add a curve. This curve is generated by a mathematical 
formula to fit the shape of the probability histogram. Check “Show curve” and click through the different 
bin widths. Notice that as the width of the intervals gets smaller, the probability histogram gets closer to this 
curve. More specifically, the area in the histogram’s rectangles more closely approximates the area under the 
curve. If we continue to reduce the size of the intervals, the curve becomes a better and better way to estimate 
the probability histogram. We’ll use smooth curves like this one to represent the probability distributions of 
continuous random variables. This idea is discussed in more detail on the next page. 
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CONTINUOUS PROBABILITY DISTRIBUTION 
(2 OF 2) 

Learning OUTCOMES 

• Use a probability distribution for a continuous random variable to estimate probabilities and 

identify unusual events. 

Previously, we examined the probability distribution for foot length. For foot length and for all other 
continuous random variables, the probability distribution can be approximated by a smooth curve called a 
probability density curve. 

Recall that these smooth curves are mathematical models. We use a mathematical model to describe a 
probability distribution so that we can use technology and the equation of this model to estimate probabilities. 
(As we mentioned earlier, we do not study the equation for this curve in this course, but every statistical 
package uses this equation, and the area under the corresponding curve, to estimate probabilities.) 

As in a probability histogram, the total area under the density curve equals 1, and the curve represents 
probabilities by area. To find the probability that X is in an interval, find the area above the interval and below 
the density curve. 

For example, if X is foot length, let’s find P(10 < X < 12), the probability that a randomly chosen male has a 
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foot length anywhere between 10 and 12 inches. This probability is the area above the interval 10 < X < 12 and 
below the curve. We shaded this area with green in the following graph. 

If, for example, we are interested in P(X < 9), the probability that a randomly chosen male has a foot length 
of less than 9 inches, we have to find the area shaded in green below: 

Comments 

1. We have seen that for a discrete random variable like shoe size, P(X < 9) and P(X ≤ 9) have different 
values. In other words, including the endpoint of the interval changes the probability. In contrast, for a 
continuous random variable like foot length, the probability of a foot length of less than or equal to 9 will 
be the same as the probability of a foot length of strictly less than 9. In other words, P(X < 9) = P(X ≤ 9). 
Visually, in terms of our density curve, the area under the curve up to and including a certain point is the 
same as the area up to and excluding the point. This is because there is no area over a single point. There 
are infinitely many possible values for a continuous random variable, so technically the probability of 
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any single value occurring is zero! 
2. It should be clear now why the total area under any probability density curve must be 1. The total area 

under the curve represents P (X gets a value in the interval of its possible values). Clearly, according to 
the rules of probability, this must be 1, or always true. 

3. Density curves, like probability histograms, may have any shape imaginable as long as the total area 
underneath the curve is 1. Each density curve is a mathematical model with an equation that is used to 
find the area underneath the curve. 

Let’s Summarize 

The probability distribution of a continuous random variable is represented by a probability density curve. 
The probability that X has a value in any interval of interest is the area above this interval and below the density 
curve. 
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INTRODUCTION TO NORMAL RANDOM 
VARIABLES 

What you’ll learn to do: Use a normal probability 
distribution to estimate probabilities and identify unusual 
events. 

The normal random variable is the classic bell curve 
graph that might look familiar. In statistics, the normal 
random variable is a powerful tool in estimating 
probabilities in hypothesis testing. Many statistical tests 
will use this standard random variable, so building a solid 
understanding of how to work with the normal random 
variable is critical to building up our statistical tool box. 
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NORMAL RANDOM VARIABLES (1 OF 6) 

Learning OUTCOMES 

• Use a normal probability distribution to estimate probabilities and identify unusual events. 

In Summarizing Data Graphically and Numerically, we encountered data sets, such as height and weight, 
with distributions that are fairly symmetric with a central peak. We call these bell-shaped. 

Many variables, such as weight, shoe sizes, foot lengths, and other human physical characteristics, exhibit 
these properties. The symmetry indicates that the variable is just as likely to take a value a certain distance below 
its mean as it is to take a value that same distance above its mean. The bell shape indicates that values closer 
to the mean are more likely, and it becomes increasingly unlikely to take values far from the mean in either 
direction. 

We use a mathematical model with a smooth bell-shaped curve to describe these bell-shaped data 
distributions. These models are called normal curves or normal distributions. They were first called 
“normal” because the pattern occurred in many different types of common measurements. 

The general shape of the mathematical model used to generate a normal curve looks like this: 

Observations of Normal Distributions 

There are many normal curves. Even though all normal curves have the same bell shape, they vary in their center 
and spread. 
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Because normal curves are mathematical models, we use Greek letters to represent the mean and standard 
deviation of a normal curve. The mean of a normal distribution locates its center. We use the Greek letter μ 
(pronounced “mu” ) to represent the mean. We use the Greek letter σ (pronounced “sigma”) to represent the 
standard deviation of a normal distribution. The standard deviation determines the spread of the distribution. 
In fact, the shape of a normal curve is completely determined by specifying its standard deviation. As we will 
see, if two normal distributions have the same standard deviation, then the shapes of their normal curves will 
be identical. 

Following are some observations we can make as we look at the figure above: 

• The black and the red normal curves have means or centers at μ = 10. However, the red curve is more 
spread out and thus has a larger standard deviation. Notice that the red normal curve is also shorter. This 
makes sense because these curves are probability density curves, so the area under each curve has to be 1. 

• The black and the green normal curves have the same standard deviation or spread. 

Comment 

• We use  to represent the mean of data in a sample. We use μ to represent the mean of a density curve 
defined by a mathematical model. 

• We use SD or  to represent the standard deviation of data in sample. We use σ to represent the 
standard deviation of a density curve defined by a mathematical model. 
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The normal curve has a central role in statistical inference, as we’ll see in Linking Probability to Statistical 
Inference. Understanding the normal distribution is an important step in the direction of our overall goal, 
which is to relate sample means or proportions to population means or proportions. The goal of this section is 
to help you better understand normal random variables and their distributions. 

All normal curves share a basic geometry. While the mean locates the center of a normal curve, it is the 
standard deviation that is in control of the geometry. To see how, let’s examine a few pictures of normal curves 
to see what they reveal. 

Example 

One Standard Deviation on Each Side of the Mean 

Let’s start with a random variable X that has a normal distribution with mean = 10 and standard 

deviation = 2. Let’s practice our new notation. Here we would write μ = 10 and σ = 2 . 

The normal curve for X is shown below. 

As expected, the mean μ = 10 is located at the center of the normal curve. The other two arrows 

point to values 1 standard deviation on each side of the mean. 

The point 1 standard deviation less than the mean is represented by μ − σ . Since μ = 10 and σ = 2, 

this point is located at 10 − 2 = 8, as shown. 

The point 1 standard deviation more than the mean is represented by μ + σ . Since μ = 10 and σ = 2, 

this point is located at 10 + 2 = 12, as shown. 
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You will notice we have indicated that the area of the green region is 0.68. So we can say that the 

probability of X being between 8 and 12 equals 0.68. 

Or, using our probability notation, we could write: 

Now here is an interesting fact. If we took any normal distribution and drew a similar picture, the 

probability that a value falls within 1 standard deviation of the mean is always the same. Here are 

several ways to express this idea: 

• For any normal curve, the central area within 1 standard deviation of the mean equals 0.68. 

• Roughly 68% of the time we will expect X to have a value within 1 standard deviation of the 

mean. 

• . 

This is a big deal. It is one of the things that makes normal curves special. In general, probability 

density curves for continuous random variables with different shapes don’t have this special 

property. 

Let’s put this idea in context. If the weight of babies at birth follows a normal distribution with 

mean μ = 3,500 grams and standard deviation σ = 600 grams, then we can conclude that most 

babies – that is, about 68% – will weigh somewhere between 2,900 grams (i.e., 3,500 − 600 = 

2,900) and 4,100 grams (i.e., 3,500 + 600 = 4,100). 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 

513  |  

http://oli.cmu.edu/
https://creativecommons.org/licenses/by/4.0


NORMAL RANDOM VARIABLES (2 OF 6) 
NORMAL RANDOM VARIABLES (2 OF 6)  |  514



NORMAL RANDOM VARIABLES (2 OF 6) 

Learning OUTCOMES 

• Use a normal probability distribution to estimate probabilities and identify unusual events. 

Example 

Beyond One Standard Deviation from the Mean 

Earlier we stated that for all normal curves, the area within 1 standard deviation of the mean will 

equal 0.68. From this fact, we can see that the area outside of this region equals 1 − 0.68 = 0.32. 

And since normal curves are symmetric, this outside area of 0.32 is evenly divided between the two 

outer tails. So the area of each tail = 0.16. 
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The outer tail areas allow us to answer related probability questions: 

• Question: What is the probability that a normal random variable is more than 1 standard 

deviation from its mean? 

• Answer: 0.32 

• Question: What is the probability that a normal random variable is more than 1 standard 

deviation larger than its mean? 

• Answer: 0.16 

Before leaving this example, we highlight one more geometric fact about normal curves. Look at 

the arrows pointing at the normal curve in the following figure. 

At these points, the curve changes the direction of its bend and goes from bending upward to 

bending downward, or vice versa. A point like this on a curve is called an inflection point. Every 

normal curve has inflection points at exactly 1 standard deviation on each side of the mean. 

With the following simulation, you can look at a variety of normal curves. Use the slider to change the standard 
deviation. As you change the standard deviation, you will of course get different normal curves. Observe that 
the two properties we discussed in the examples remain true for any standard deviation you select: 

• The probability that a value is within 1 standard deviation of the mean is 68%. 
• The x-values of the inflection points correspond to 1 standard deviation above and below the mean. 

Click here to open this simulation in its own window. 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=338 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=338#h5p-293 

Now we extend this idea to look at the probability of a value falling within 2 standard deviations of the mean 
or 3 standard deviations of the mean. 

If X is a normal random variable with mean μ and standard deviation σ, then 

1. The probability that X is within 1 standard deviation of the mean equals approximately 0.68.

2. The probability that X is within 2 standard deviations of the mean equals approximately 0.95.
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3. The probability that X is within 3 standard deviations of the mean equals approximately 0.997.

To summarize using probability notation: 

1. 
2. 
3. 

 
These three facts together are called the empirical rule for normal curves. 

Comment 

Let’s take a moment to look a bit deeper at what the empirical rule tells us. 

• The first statement of the empirical rule really defines a range of likely values of X. It gives us an interval 
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– within 1 standard deviation of the mean – that contains the central 68% of the values. This statement 
is very similar to statements about the interquartile range (IQR) that we saw back in the module 
Summarizing Data Graphically and Numerically. The IQR is the width of the interval that captures 
the central 50% of the data points of a quantitative distribution. 

• The second and third statements in the empirical rule help us identify values that are unlikely to occur. 
Compare this to the discussion in Summarizing Data Graphically and Numerically where we defined 
an outlier to be a value that is either more than 1.5 IQRs above quartile 3 or more than 1.5 IQRs below 
quartile 1. Here we can make the following characterizations of extreme values in normal distributions. 

◦ 95% of values fall within 2 standard deviations of the mean. It is therefore unlikely for a value to 
fall more than 2 standard deviations away from the mean. Values more than 2 standard deviations 
away from the mean in a normal distribution are often called outliers. 

◦ 99.7% of values fall within 3 standard deviations of the mean. It is therefore extremely unlikely for 
a value to fall more than 3 standard deviations away from the mean. Values more than 3 standard 
deviations away from the mean are often called extreme outliers. 

Try It 

1. The second statement of the Empirical Rule (in both words and symbols) is: 

The probability that X is within 2 standard deviations of the mean equals approximately 0.95. 

 

Use this to find the area of each tail indicated by the question marks in the image below. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=338#h5p-294 

2. The third statement of the Empirical Rule (in both words and symbols) is: 

The probability that X is within 3 standard deviations of the mean equals approximately 0.997. 
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Use this to find the area of each tail indicated by the question marks in the image below. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=338#h5p-295 
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NORMAL RANDOM VARIABLES (3 OF 6) 

Learning OUTCOMES 

• Use a normal probability distribution to estimate probabilities and identify unusual events. 

Example 

The Empirical Rule in a Context 

Suppose that foot length of a randomly chosen adult male is a normal random variable with mean μ 

= 11 and standard deviation σ = 1.5. Then the empirical rule lets us sketch the probability distribution 

of X as follows: 

(a) What is the probability that a randomly chosen adult male will have a foot length 
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between 8 and 14 inches? 

Answer: 0.95, or 95% 

(b) An adult male is almost guaranteed (0.997 probability) to have a foot length between 

what two values? 

Answer: 6.5 and 15.5 inches 

(c) The probability is only 2.5% that an adult male will have a foot length greater than how 

many inches? 

Answer: 14 inches 

Ninety-five percent of the area is within 2 standard deviations of the mean, so 2.5% of the area is in 

the tail above 2 standard deviations. The x-value 2 standard deviations above the mean is 14 inches. 

Now you should try a few: questions (d), (e), and (f) are presented in the Try It activity. Use the figure 
preceding question (a) to help you. 

Try It 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=341#h5p-296 

Comment 

Notice that there are two types of problems we may want to solve: those like (a) and, from the Try It activity, 
(d) and (e), in which a particular interval of values of a normal random variable is given and we are asked to find 
a probability; and those like (b), (c), and, from the Try It, (f), in which a probability is given and we are asked 
to identify values of the normal random variable. 
CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 

Feedback for interactive question 

(d) How likely or unlikely is a male’s foot length to be smaller than 9.5 inches? Not too unlikely, since the probability of being smaller 

than 9.5 is 0.16, which is not a particularly low probability. 

Feedback: Indeed, the probability that foot length is between 9.5 and 12.5 is 0.68, and therefore the remaining two tails together 

have probability 1 − 0.68 = 0.32. We conclude, then, that: P(X 15.5) = 0.003/2 = 0.0015. 

(e) How likely or unlikely is a foot length longer than 15.5 inches? Extremely unlikely, since the probability of being longer than 

15.5 is only 0.0015. 

Feedback: Indeed, the probability that foot length is between 6.5 and 15.5 is 0.997, and therefore the remaining two tails together 

have probability 1 − 0.997 = 0.003. We conclude, then, that P(X > 15.5) = 0.003/2 = 0.0015. 

(f) There is probability of 0.5 that a male’s foot is shorter than 11. 

Feedback: The value that divides the area under the curve into two halves is 11, so that P(X 11) = 0.5. 
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NORMAL RANDOM VARIABLES (4 OF 6) 

Learning OUTCOMES 

• Use a normal probability distribution to estimate probabilities and identify unusual events. 

Let’s go back to our example of foot length: How likely or unlikely is it for a male’s foot length to be more than 
13 inches? 

Because 13 inches doesn’t happen to be exactly 1, 2, or 3 standard deviations away from the mean, we could 
give only a very rough estimate of the probability at this point. Clearly, the empirical rule only describes the tip 
of the iceberg, and although it serves well as an introduction to the normal curve and gives us a good sense of 
what would be considered likely and unlikely values, it is very limited in the probability questions it can help 
us answer. 

Here is another familiar normal distribution: 
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Suppose we are interested in knowing the probability that a randomly selected student will score 633 or 
more on the math portion of her SAT (this is represented by the red area). Again, 633 does not fall exactly 1, 2, 
or 3 standard deviations above the mean. Notice, however, that a SAT score of 633 and a foot length of 13 are 
both about one-third of the way between 1 and 2 standard deviations. As you continue to read this page, you’ll 
realize that this positioning relative to the mean is the key to finding probabilities. 

Finding Probabilities for a Normal Random Variable 

As we saw, the empirical rule is very limited in helping us answer probability questions. It is limited to 
questions involving values that fall exactly 1, 2, and 3 standard deviations away from the mean. 

We can approach the answering of probability questions in two possible ways: a table and technology. In the 
next section, you will learn how to use technology to convert between z-scores and probabilities. 

Standardizing Values 

The first step to assessing a probability associated with a normal value is to determine the relative value with 
respect to all the other values taken by that normal variable. This is accomplished by determining how many 
standard deviations below or above the mean that value is. 
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Example 

Foot Length 

How many standard deviations below or above the mean male foot length is 13 inches? Since the 

mean is 11 inches, 13 inches is 2 inches above the mean. Since a standard deviation is 1.5 inches, this 

would be 2 / 1.5 = 1.33 standard deviations above the mean. Combining these two steps, we could 

write: 

(13 in. − 11 in.) / (1.5 in. per standard deviation) = (13 − 11) / 1.5 standard deviations = +1.33 standard 

deviations 

In the language of statistics, we have just found the z-score for a male foot length of 13 inches to be z = 
+1.33. Or, to put it another way, we have standardized the value of 13. In general, the standardized value z tells 
how many standard deviations below or above the mean the original value is. It is calculated as follows: 

z-score = (value – mean) / standard deviation 
The convention is to denote a value of our normal random variable X with the letter x. Since the mean is 

written μ and the standard deviation σ, we may write the standardized value as 

 
Notice that since σ is always positive, for values of x above the mean (μ), z will be positive; for values of x 

below μ, z will be negative. 
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Example 

Standardizing Foot Measurements 

Let’s go back to our foot length example and answer some more questions. 

(a) What is the standardized value for a male foot length of 8.5 inches? How does this foot 

length relate to the mean? 

z = (8.5 − 11) / 1.5 = −1.67. This foot length is 1.67 standard deviations below the mean. 

(b) A man’s standardized foot length is +2.5. What is his actual foot length in inches? If z = 

+2.5, then his foot length is 2.5 standard deviations above the mean. Since the mean is 11 and 

each standard deviation is 1.5, we get that the man’s foot length is 11 + 2.5(1.5) = 14.75 inches. 

Thez-score also allows us to compare values of different normal random variables. Here is an 

example: 

(c) In general, women’s foot length is shorter than men’s. Assume that women’s foot length 

follows a normal distribution with a mean of 9.5 inches and standard deviation of 1.2. Ross’s 

foot length is 13.25 inches, and Candace’s foot length is only 11.6 inches. Which of the two has 

a longer foot relative to his or her gender group? 

To answer this question, let’s find the z-score of each of these two normal values, bearing in mind 

that each value comes from a different normal distribution. 
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Ross: z-score = (13.25 − 11) / 1.5 = 1.5 (Ross’s foot length is 1.5 standard deviations above the mean 

foot length for men). 

Candace: z-score = (11.6 − 9.5) / 1.2 = 1.75 (Candace’s foot length is 1.75 standard deviations above the 

mean foot length for women). 

Note that even though Ross’s foot is longer than Candace’s, Candace’s foot is longer relative to their 

respective genders. 

To Sum Up…Problem (c) illustrates how z-scores become crucial when you want to compare distributions. 
CC licensed content, Shared previously 
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NORMAL RANDOM VARIABLES (5 OF 6) 

Learning OUTCOMES 

• Use a normal probability distribution to estimate probabilities and identify unusual events. 

We now know that the empirical rule gives probabilities for values that lie exactly 1, 2, and 3 standard deviations 
away from the mean. But how do we determine the probability that a value lies some fraction of a standard 
deviation away from the mean? In this situation, we will use technology to find the probability. 

For now, we use a simulation to find the probability based on a z-score. Statistical packages can also be used 
to find probabilities associated with a normal curve. 

Example 

The Distribution of z-Scores 

Recall that we use the area under a normal density curve to find a probability. If we convert the 

x-values into z-scores, the distribution of z-scores is also a normal density curve. This curve is called 

the standard normal distribution. 

Here we compare the normal density curve for the foot lengths to the standard normal curve: 
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The normal curve pictured on top is the model for the distribution of foot lengths. Note that the 

values on the axis are foot lengths. The distribution has a mean of 11 inches and a standard 

deviation of 1.5 inches. A foot length of 13 inches is marked. The shaded area is 0.0918. This is the 

probability that a randomly selected male will have a foot length greater than 13 inches: P(X > 13) = 

0.0918. 

The normal curve pictured on bottom is the standard normal distribution. This represents the 

distribution of z-scores. Note that the values on the axis are z-scores. The mean is 0 and the 

standard deviation is 1. The z-score corresponding to X = 13 inches is marked. 

 

The shaded area here is the same, 0.0918. This is the probability that a z-score is greater than 1.33: 

P(Z > 1.33) = 0.0918. 
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Here is the main idea: Since the areas are the same, we use the standard normal curve to find the 

probabilities associated with any normal density curve. 

Note: The standard normal distribution always has a mean = 0 and a standard deviation = 1. To 

understand this, recall that a z-score is the number of standard deviations X is above (or below) the 

mean. 

• When the x-value is the mean, the z-score is 0. 

• We can illustrate this for the foot lengths: If X is the mean, then 

 

• When X is 1 standard deviation above the mean, the z-score is 1. 

• We can illustrate this for the foot lengths: If x-value is 1 standard deviation above the mean, 

X = 11 + 1.5 = 12.5. 

• Similarly, the z-score for the x-value that is 1 standard deviation below the mean is −1. 

Example 

Using the Standard Normal Curve to Find Probabilities 

We use a simulation based on the standard normal distribution to find probabilities. In this 

simulation, the numbers on the horizontal axis are z-scores. The areas are rounded to four decimal 

places, so these areas are not exact values. 
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Use this image from the simulation to find the probabilities: 

• Find P(−1.21 < Z < 1.21). In words, we want to find the probability that the z-score is between 

−1.21 and 1.21. This probability is the light blue area. So the answer is 0.7737. 

• Find P(Z > 1.21). In words, we want to find the probability that the z-score is greater than 1.21. 

This probability is the blue area to the right of Z = 1.21. So the answer is 0.1131. 

• Find P(Z < −1.21). In words, we want to find the probability that the z-score is less than −1.21. 

This probability is the dark blue area to the left of Z = −1.21. So the answer is 0.1131. Note that 

this is the same as P(Z > 1.21) because of the symmetry in the normal distribution. Both tails 

have the same area. 

• Find P(Z > −1.21). In words, we want to find the probability that the z-score is greater than 

−1.21. This probability is the area to the right of −1.21. This is the sum of the green area and 

the dark blue area. So the answer is 0.7737 + 0.1131 = 0.8868. 

Note: Here is another way to use the simulation to find P(Z > −1.21). Here we moved one slider as 

far to the left as possible, then located the other slider at Z = −1.21. 
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Notice that the area is 0.8869, not 0.8868. This discrepancy is due to rounding. The simulation 

uses a mathematical model to find the areas. These areas are rounded to four decimal places. Don’t 

worry about this small difference. Either answer is acceptable. 

We now practice using the simulation based on the standard normal curve to find probabilities. Later we use 
this same simulation to find probabilities for any normal distribution. 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=350 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=350#h5p-297 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=350#h5p-298 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=350#h5p-299 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=350#h5p-300 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=350#h5p-301 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 

  |  538

https://pressbooks.cuny.edu/conceptsinstatistics/?p=350#h5p-301
http://oli.cmu.edu/
https://creativecommons.org/licenses/by/4.0


NORMAL RANDOM VARIABLES (6 OF 6) 
539  |  NORMAL RANDOM VARIABLES (6 OF 6)



NORMAL RANDOM VARIABLES (6 OF 6) 

Learning OUTCOMES 

• Use a normal probability distribution to estimate probabilities and identify unusual events. 

Now we use the simulation and the standard normal curve to find the probabilities associated with any normal 
density curve. 

Example 

Length of Human Pregnancy 

The length (in days) of a randomly chosen human pregnancy is a normal random variable with μ = 

266, σ = 16. So X = length of pregnancy (in days) 

(a) What is the probability that a randomly chosen pregnancy will last less than 246 days? 

We want P(X < 246). To find this probability, we first convert X = 246 to a z-score: 

 

Now we can use the simulation to find P(Z < −1.25). This is the area under the normal probability 

curve to the left of Z = −1.25. 
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The probability that a randomly chosen pregnancy lasts less than 246 days is 0.1056. In other 

words, there is an 11% chance that a randomly selected pregnancy will last less than 246 days. 

(b) Suppose a pregnant woman’s husband has scheduled his business trips so that he will be in 

town between the 235th and 295th days of her pregnancy. What is the probability that the birth 

will take place during that time? 

Compute the z-scores for each of these x-values: 

and 

 

Use the simulation to find the area under the standard normal curve between these two z-scores. 

541  |  



So the desired probability is 0.9387. 

There is about a 94% probability that he will be home for the birth. Looks like he planned well. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=356#h5p-302 

  |  542

https://pressbooks.cuny.edu/conceptsinstatistics/?p=356#h5p-302


The previous examples all followed the same general form: Given values of a normal random variable, we 
found an associated probability. The two basic steps in the solution process were as follows: 

1. Convert x-value to a z-score. 
2. Use the simulation to find associated probability. 

The next example is a different type of problem: Given a probability, we will find the associated value of the 
normal random variable. The solution process will go in reverse order. 

1. Use a new simulation to convert statements about probabilities to statements about z-scores. 
2. Convert z-scores to x-values. 

These types of problems are informally called “work-backwards” problems. We will use a new simulation for 
these types of problems. The new simulation requires us to enter a probability and then gives us the associated 
z-score. This is backwards from the simulation we worked with previously where we entered a z-score to find a 
probability. We will use this simulation in the next example. 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=356 

Example 

Work Backwards to Find X 

Foot length (in inches) of a randomly chosen adult male is a normal random variable with a mean of 

11 and standard deviation of 1.5. So X = foot length (inches). 
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(a) Suppose that an XL sock is designed to fit the largest 30% of men’s feet. What is the smallest 

foot length that fits an XL sock? 

Step 1: Use the simulation to convert the probability to a statement about z-scores. 

We want to mark off the largest 30% of the distribution, so the probability to the right of the 

z-score is 30%. This means that 70% of the area is to the left of the z-score. 

From the simulation, we can see that the corresponding z-score is 0.52. 

Step 2: Now we need to convert this z-score to a foot length. 

Before we calculate the length, note that the z-score is about 0.5, so the x-value will be about 0.5 

standard deviations above the mean. 

 

Conclusion: A foot length of 11.75 inches is the shortest foot for an XL sock. 

(b) What is the first quartile for the men’s foot lengths? 

Step 1: Use the simulation to convert this probability into a statement about z-scores. 

We want to mark off the smallest 25% of the distribution, so the probability to the left of the 

z-score is 25%. 
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From the simulation, we can see that the corresponding z-score is −0.67. 

Step 2: Convert this z-score to a foot length. If X is the foot length we seek, then X is 0.67 standard 

deviations below the mean. That is, 

 

Conclusion: The first quartile mark is 9.995 inches, so about 25% of the men’s feet are shorter 

than 10 inches. 

Comments 

In the preceding example (specifically step 2), we found the x-value by reasoning about the meaning of the 
z-score. We can also develop a formula for this process. 

Recall the definition of z-score. In words, the z-score of an x-value is the number of standard deviations X is 
away from the mean. As a formula, this is 
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We can solve this equation for X as follows: 

 
This gives us a formula for finding X from Z. You can use this formula in step 2 of a work-backwards 

problem. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=356#h5p-303 

Let’s Summarize 

• In “Continuous Random Variables,” we made the transition from discrete to continuous random 
variables. A continuous random variable is not limited to distinct values. It is a measurement such as 
foot length. We cannot display the probability distribution for a continuous random variable with a 
table or histogram. We use a density curve to assign probabilities to intervals of x-values. We use the area 
under the density curve to find probabilities. 

• We use a normal density curve to model the probability distribution for many variables, such as weight, 
shoe sizes, foot lengths, and other human physical characteristics. Normal curves are mathematical 
models. We use µ to represent the mean of a normal curve and σ to represent the standard deviation of a 
normal curve. We use Greek letters to remind us that the normal curve is not a distribution of real data. 
It is a mathematical model based on a mathematical equation. We use this mathematical model to 
represent the perfect bell-shaped distribution. 

• For a normal curve, the empirical rule for normal curves tells us that 68% of the observations fall within 1 
standard deviation of the mean, 95% within 2 standard deviations of the mean, and 99.7% within 3 
standard deviations of the mean. 

• To compare x-values from different distributions, we standardize the values by finding a z-score: 
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• A z-score measures how far X is from the mean in standard deviations. In other words, the z-score is the 
number of standard deviations X is from the mean of the distribution. For example, Z = 1 means the 
x-value is 1 standard deviation above the mean. 

• If we convert the x-values into z-scores, the distribution of z-scores is also a normal density curve. This 
curve is called the standard normal distribution. We use a simulation with the standard normal curve 
to find probabilities for any normal distribution. 

• We can also work backwards and find the x-value for a given probability. We used a different simulation 
to work backwards from probabilities to x-values. With this simulation, we found x-values 
corresponding to quartiles and percentiles. 
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PUTTING IT TOGETHER: PROBABILITY AND 
PROBABILITY DISTRIBUTION 

Let’s Summarize 

Here is a summary of the key concepts developed in this module: 

• The probability of an event is a measure of the likelihood that the event occurs. Probabilities are always 
between 0 and 1. The closer the probability is to 0, the less likely the event is to occur. The closer the 
probability is to 1, the more likely the event is to occur. 

• The two ways of determining probabilities are empirical and theoretical. 
◦ Empirical methods are based on data. The probability of an event is approximated by the relative 

frequency of the event. 
◦ Theoretical methods use the nature of the situation to determine probabilities. 

• Following are some common probability rules: 
◦ P(not A) = 1 − P(A). 
◦ When two events have no outcomes in common, they are disjoint. If A and B are disjoint events, P 

(A or B) = P(A) + P(B). 
◦ When the knowledge of the occurrence of one event A does not affect the probability of another 

event B, we say the events are independent. If A and B are independent events, P(A and B) = P( 
A) ·P(B). 

• When we have a quantitative variable with outcomes that occur as a result of some random process (e.g., 
rolling a die, choosing a person at random), we call it a random variable. There are two types of random 
variables: 

◦ Discrete random variables have numeric values that can be listed and often can be counted. We find 
probabilities using areas in a probability histogram. 

◦ Continuous random variables can take any value in an interval and are often measurements. We use 
a density curve to assign probabilities to intervals of x-values. We use the area under the density 
curve to find probabilities. 

• We use a normal density curve to model the probability distribution for many variables, such as weight, 
shoe sizes, foot lengths, and other physical characteristics. For a normal curve, the empirical rule for 
normal curves tells us that 68% of the observations fall within 1 standard deviation of the mean, 95% 
within 2 standard deviations of the mean, and 99.7% within 3 standard deviations of the mean. 
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• To compare x-values from different distributions, we standardize the values by finding a z-score: 

• A z-score measures how far X is from the mean in standard deviations. In other words, the z-score is the 
number of standard deviations X is from the mean of the distribution. For example, Z = 1 means the 
x-value is one standard deviation above the mean. 

• If we convert the x-values into z-scores, the distribution of z-scores is also a normal density curve. This 
curve is called the standard normal distribution. We use a simulation with the standard normal curve to 
find probabilities for any normal distribution. 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
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WHY IT MATTERS: LINKING PROBABILITY 
TO STATISTICAL INFERENCE 

Why understand the link between probability and 
statistical interference? 

This module introduces our study of inference. Before we begin Linking Probability to Statistical Inference, 
let’s look at how the remainder of the course relates to the Big Picture of Statistics. 

Recall that we start a statistical investigation with a research question. The investigation proceeds with the 
following steps: 

• Produce Data: Determine what to measure, then collect the data. ← Types of Statistical Studies and 
Producing Data 

• Explore the Data: Analyze and summarize the data. ← Summarizing Data Graphically and 
Numerically, Examining Relationships: Quantitative Data, Nonlinear Models, Relationships 
in Categorical Data with Intro to Probability 

• Draw a Conclusion: Use the data, probability, and statistical inference to draw a conclusion about the 
population. ← Relationships in Categorical Data with Intro to Probability, Probability and 
Probability Distributions,Linking Probability to Statistical Inference,Inference for One 
Proportion, Inference for Two Proportions, Inference for Means, Chi-Square Tests 

In the Big Picture of Statistics, we are about to start the last step: Inference. We use data from a sample to 
“infer” something about the population in this and the upcoming modules. Inference is based on probability. 
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Example 

At the end of April 2005, ABC News and the Washington Post conducted a poll to determine the 

percentage of U.S. adults who support the death penalty. 

Research question: 

What percentage of U.S. adults support the death penalty? 

Steps in the statistical investigation: 

1. Produce Data: Determine what to measure, then collect the data.The poll selected 1,082 

U.S. adults at random. Each adult answered this question: “Do you favor or oppose the death 

penalty for a person convicted of murder?” 

2. Explore the Data: Analyze and summarize the data.In the sample, 65% favored the death 

penalty. 

3. Draw a Conclusion: Use the data, probability, and statistical inference to draw a conclusion 

about the population. 

Our goal is to determine the percentage of the U.S. adult population that support the death 

penalty. We know that different samples give different results. What are the chances that a sample 

reflects the opinions of the population within 3%? Probability describes the likelihood that a sample 
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is this accurate, so we can say with 95% confidence that between 62% and 68% of the population 

favor the death penalty. 

We illustrated the Big Picture of Statistics with an example about an inference made from survey data. From 
a random sample of U.S. adults, we estimated the percentage of all U.S. adults who support the death penalty. 
We saw that probability describes the likelihood that an estimate is within 3% of the true percentage with this 
opinion in the population. For this example, there is a 95% chance that a random sample is within 3% of the 
true population percentage. 

Because random samples vary, inference always involves uncertainty. This uncertainty is captured by 
probability statements that are part of our conclusions. We emphasize this point in the following example 
where we look more closely at the process of statistical investigation with a real court case. Our goal is to 
identify arguments that use statistical inference to draw a conclusion as well as arguments that do not use 
inference. 
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EXAMPLE 

Using Inference to Detect Cheating – A Real Case 

How can a prosecutor use data to detect cheating? The details of this case appeared in Chance 

magazine in 1991. 

The Case: During an exam at a university in Florida in 1984, the proctor suspected that one 

student, whom we will call Student C, was copying answers from another student, whom we will 

call Student A. The proctor accused Student C of cheating, and the case went to the university’s 

supreme court. 

The Evidence: At the trial, the prosecution introduced evidence based on data. Here is the 

evidence: On the 16 questions missed by both Student A and Student C, 13 of the answers were the 

same. 

The Argument: The prosecutor used the data to draw an inference based on probability. He asked 

the question: Could 13 out of 16 matches be due to chance? He argued that a match of 13 out of 16 

by chance alone was very unlikely. The probability of this occurring is very small. So there had to be 

another explanation besides chance, and the prosecutor said the explanation was cheating. Based 

on this evidence, Student C was found guilty of academic dishonesty. 

The Role of Random Chance: To decide if we agree with this argument, we need to understand 

if chance might explain this result. We need to determine if it would be unusual to get 13 matches 

on 16 questions by chance alone. To determine if 13 out of 16 is unusual, we have to look at what 

happens in the long run if students just guess on 16 multiple choice questions. 

Let’s assume that each question had four options: a, b, c, or d. We use a computer program to 

randomly assign answers to each question, which mimics what happens when someone randomly 

guesses. Using software to imitate chance behavior is called simulation. 

Here you see a representation of answers from Student A and Student C as well as three randomly 

generated answer sets for the 16 questions missed by both Student A and Student C. We 

highlighted matches with Student A’s answers in green. 
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Notice that Student C has 13 answers that match Student A’s answers: As a proportion, this is 13 ÷ 

16 = 0.8125. It means that about 81% of the time, Student C’s answers matched Student A’s 

answers on questions that they both missed. 

For the random answers generated by “guessing,” we see the proportion of matches differs: 

• Set 1 has 6 matches with Student A: 6 ÷ 16 = 0.375 as a proportion, or about 38%. 

• Set 2 has 3 matches with Student A: 3 ÷ 16 = 0.1875 as a proportion, or about 19%. 

• Set 3 has 5 matches with Student A: 5 ÷ 16 = 0.3125 as a proportion, or about 31%. 

The proportion of matches in the randomly generated answers vary quite a bit, from 0.1875 to 

0.3125. But none are close to the proportion of matches seen in Student C’s paper, 0.8175. The 

proportion of matches for the three sets of results from the random guesses are graphed in the 

following figure. The blue line is the proportion of matches for Student C. 

Now we repeat the simulation of random sets of answers on the 16 questions, each time 

determining the proportion of matches to the wrong answers on Student A’s paper. On the left is a 

dotplot for 100 random sets of answers. Each dot represents a set of 16 answers generated by 

557  |  



random guessing. On the right is a histogram of 1,025 random sets of answers, which shows the 

long-run pattern. 

Analysis: In the histogram, we see that typical results fall between about 0.1 and 0.4. More 

specifically, if a student randomly guessed on these 16 questions, it would not be surprising to see 

from 2 to 6 matches with Student A’s wrong answers. Translated into proportions, this is 2 ÷ 16 = 

0.125 to 6 ÷ 16 = 0.375. 

Is Student C unusual? Yes. Notice that no randomly generated set of answers comes close to the 

proportion of matches on Student C’s exam. A proportion of 0.8125 would be very unusual if 

guessing, so we conclude that Student C was not guessing. 

Conclusion: The prosecution argued that a match of 13 out of 16 wrong answers (a proportion of 

0.8125) was unusual and could not be explained by random chance. Our simulation agrees with this 

observation. When we created answer sets by randomly guessing, we never saw more than 9 

matches out of 16, which is a proportion of 0.5625. We agree with the prosecution that there has to 

be another explanation besides chance. 

However, could there be another explanation besides cheating? 

Yes. If you don’t know the answer to a question on an exam, you rarely guess at random. It is more 

likely that you will make an educated guess. Some wrong answers might be more logical than 

others. This could also explain the large proportion of matches on wrong answers between the two 

students. So this evidence is not convincing evidence that Student C cheated, but we know that he 

did not just guess. 
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EXAMPLE 

Follow-up Argument Based on Exploratory Data Analysis 

Student C appealed his case. A second trial was held. This time the prosecution made a different 

argument using data. This argument did not use statistical inference. 

The prosecution created a new measurement. They compared every student’s paper to Student A’s 

paper. For the 40-multiple choice questions on the test, they counted the number of matches to 

Student A’s paper and divided by 40. This new measurement was also a proportion. 

Analysis: There were 88 students. Here are the results: 

Each dot represents a student who took the exam. A dot with a proportion of 0.6 means that 60% 

of this student’s answers matched Student A’s answers. 

Note: Student A is included in the data. Of course, Student A is the dot with the proportion of 40 

out of 40 = 1.0 This makes sense because all of Student A’s answers matched Student A. (This does 

not mean that Student A did well on the exam.) 

We see that many of the proportions fall between between 0.40 (which is 16 matches out of 40) 

and 0.60 (which is 24 matches out of 40). So it is not surprising if between 40% and 60% of a 

student’s answers matched Student A’s answers. 

Student C had 32 matches out of 40, which is a proportion of 0.80. (This does not mean that 

Student C made an 80% on the exam. It means that 80% of Student C’s answers matched Student 

A’s answers.) Student C is once again an unusual data point. 

Conclusion: This time it is harder to argue that Student C is not cheating. When we compare him 

to the rest of the class, his paper had an unusually high number of matches with Student A’s 

answers. This data together with the proctor’s testimony is fairly convincing evidence for the 

prosecution’s claim that Student C cheated by copying from Student A’s paper. 
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(SOURCE: PHILLIP J. BOLAND AND MICHAEL PROSCHAN, “THE USE OF STATISTICAL EVIDENCE IN 

ALLEGATIONS OF EXAM CHEATING,” CHANCE 3(3):10-14, 1991.) 

What’s the Main Point? 

Statistical inference always involves an argument based on probability. 
In this court case, the prosecution used two different types of arguments to provide evidence of cheating. 

The first argument is an example of statistical inference because it is based on probability. We set up a 
simulation to reflect an assumption that the prosecutor made. The assumption is that answer sets come from 
random guessing. We simulated over a thousand answer sets with randomly chosen answers to investigate the 
long-run behavior of simulated answer sets. We then compared Student C to the distribution of randomly 
generated answer sets. Student C was unusual. We concluded that Student C was not randomly guessing. 

The second argument is an example of exploratory data analysis with no statistical inference. The prosecutor 
designed a measurement and collected data from every student in the class. He compared Student C’s 
measurement to the measurements of the other students. Probability did not have a role in this analysis. 
Probability statements require a random event and a look at long-run behavior of random events, so this is not 
an example of statistical inference. 

LEARN BY DOING 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=366#h5p-304 
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LEARN BY DOING 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=366#h5p-305 

The court case illustrates how we can view statistical inference as an argument based on probability. Here 
we briefly connect the probability argument with the vocabulary and ideas from the module Probability and 
Probability Distribution. 

Recall the following important points about probability that we learned in that module: 

• Probability is a measure of how likely an event is to occur. 
• We can make probability statements only about random events. Random here means that the outcome 

is uncertain in the short run but has a predictable pattern in the long run. 

How does the logic of the probability argument in the court case relate to Probability and Probability 
Distribution? 

To understand the probability argument in the original court case, we used a computer simulation to 
analyze the long-run pattern that emerges if students randomly guess on multiple-choice questions. Our 
variable was Proportion of matches with Student A’s wrong answers on 16 questions. We graphed the distribution 
of a large number of proportions from the random answer sets to see the pattern. Using the vocabulary of 
Probability and Probability Distribution, the proportion of matches is a random variable. In the short run, we 
do not know the proportion of matches that will occur in a random answer set, but in the long run, we see 
a pattern in the distribution of these proportions. This distribution of proportions is treated as a probability 
model. From it we can see how much variability to expect in matches from random answer sets. We can also 
identify unusual values. From the pattern in this distribution, we can say it is very unlikely that Student C 
guessed. 

How does this logic relate to the Big Picture? 
This logic is similar to the logic of inference that we explore in future modules, where we randomly select 

samples from a population. We continue to use computer simulation throughout these modules to analyze 
the long-run pattern that emerges in measurements from random samples. We create probability models that 
tell us how much variability to expect in random samples. We also use these models to identify unusual 
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measurements. From the patterns, we use data to make judgments about the population. In this way, our 
conclusions about a population are based on probability. 

Probability and Probability Distribution included a long discussion of probability models that are normal 
curves. Under certain conditions, the long-run behavior of measurements from random samples can be 
modeled with a normal curve (or a similar curve), we see in this module and in Inference for One Proportion, 
Inference for Two Proportions, and Inference for Means. In each module, we ask the question, When can we use 
a normal model? Once we know these conditions, we can use what we learned in the previous module to make 
probability-based decisions about population values. 

Here we add these ideas to the Big Picture to show how probability connects to inference. 

Note that we highlighted two types of inference in the diagram: 
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• Estimate a population value. 
• Test a claim about the population value. 

We end our introduction to inference with a look at research questions that illustrate these two types of 
inference. We also connect these examples to the types of inference we learn about in upcoming modules. 

Research Questions That Involve Inference 

Type of Question Examples Variable Type Unit 

Make an estimate 
about the population 

What proportion of all U.S. adults support 
the death penalty? 

Categorical 
variable 

Inference for One 
Proportion 

What is the average number of hours that 
community college students work each week? 

Quantitative 
variable 

Inference for 
Means 

Test a claim about the 
population 

Do the majority of community college 
students qualify for federal student loans? 

Categorical 
variable 

Inference for One 
Proportion 

Has the average birth weight in a town 
decreased from 3,500 grams? 

Quantitative 
variable 

Inference for 
Means 

Compare two 
populations 

Are teenage girls more likely to suffer from 
depression than teenage boys? 

Categorical 
variable 

Inference for Two 
Proportions 

In community colleges do female students 
have a higher average GPA than male 
students? 

Quantitative 
variable 

Inference for 
Means 

Note: Each research question relates to either a categorical variable or a quantitative variable. In this course, 
three criteria determine the inference procedure we use: 

• The type of variable. 
• The type of inference (estimate a population value or test a claim about a population value). 
• The number of populations involved. 

LEARN BY DOING 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=366#h5p-306 
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INTRODUCTION TO DISTRIBUTION OF 
SAMPLE PROPORTIONS 

What you’ll learn to do: Describe the sampling distribution 
for sample proportions and use it to identify unusual (and 
more common) sample results. 

When we have real-world quantitative data, we use the distribution of sample proportions to explore and 
understand our results. In this section, we will learn statistical properties of sample proportion. In particular, 
for large enough samples under certain conditions, we will see the shape of the sample proportions (i.e. the 
Distribution of Sample Proportions) is roughly normal. We will use this to our advantage in constructing 
confidence intervals as well as estimating probabilities of certain events occurring, based on our results from 
the study data. 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open 
Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 
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PARAMETERS VS. STATISTICS 

Learning OUTCOMES 

• Describe the sampling distribution for sample proportions and use it to identify unusual (and 

more common) sample results. 

• Distinguish between a sample statistic and a population parameter. 

One of the goals of inference is to draw a conclusion about a population on the basis of a random sample from 
the population. Obviously, random samples vary, so we need to understand how much they vary and how they 
relate to the population. Our ultimate goal is to create a probability model that describes the long-run behavior 
of sample measurements. We use this model to make inferences about the population. 

We begin our investigation with a simplified and artificial situation. 

Example 

Proportions from Random Samples Vary 

Imagine a small college with only 200 students, and suppose that 60% of these students are 

eligible for financial aid. 

In this simplified situation, we can identify the population, the variable, and the population 

proportion. 

• Population: 200 students at the college. 

• Variable:Eligibility for financial aid is a categorical variable, so we use a proportion as a 

summary. 

• Population proportion: 0.60 of the population is eligible for financial aid. 

Note: Populations are usually much larger than 200 people. Also, in real situations, we do not know 
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the population proportion. We are using a simplified situation to investigate how random samples 

relate to the population. This is the first step in creating a probability model that will be useful in 

inference. 

How accurate are random samples at predicting this population proportion of 0.60? 

To answer this question, we randomly select 8 students and determine the proportion who are 

eligible for financial aid. We repeat this process several times. Here are the results for 3 random 

samples: 

Notice the following about these random samples: 

• Each random sample came from a population in which the proportion eligible for financial aid 

is 0.60, but sample proportions vary. Each random sample has a different proportion who are 

eligible for financial aid. 

• Some sample proportions are larger than the population proportion of 0.60; some sample 

proportions are smaller than the population proportion. 

• Some samples give good estimates of the population proportion. Some do not. In this case, 

0.625 is a much better estimate than 0.375. 

• A lot of variability occurs in these sample proportions. It is not surprising, therefore, that a 

sample of 8 students may give an inaccurate estimate for the proportion of those eligible for 

financial aid in the population. It makes sense that small samples of only 8 students may not 
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represent the population accurately. Later we investigate the effect of increasing the size of 

the sample. 

• The variability we see in proportions from random samples is due to chance. 

Try It 

In these activites, we use the following simulation to select a random sample of 8 students from 

the small college in the previous example. At the college, 60% of the students are eligible for 

financial aid. For each sample, the simulation calculates the proportion in the sample who are 

eligible for financial aid. Repeat the sampling process many times to observe how the sample 

proportions vary, then answer the questions. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=371#h5p-307 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=371#h5p-308 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=371#h5p-309 

Click here to open this simulation in its own window. 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=371 

Example 

Means from Random Samples Vary 

Now let’s consider a quantitative variable with this same population of 200 students at a small 

college. Let’s also suppose that the mean amount of financial aid received by students at the 

college is $1,500. 

In this simplified situation, we have 

• Population: 200 students at the college. 

• Variable: Financial aid amount ($) is a quantitative variable, so we use a mean as a 

summary. 

• Population mean: $1,500. 

How accurate are random samples at predicting this population mean of $1,500? 

To answer this question, we randomly select 8 students and determine the mean amount of 

financial aid received by the students. We repeat this process several times. Here are the results for 

3 random samples: 
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Notice that observations we made earlier about sample proportions are true for sample means. 

• Each random sample came from a population for which the mean amount of financial aid 

received by individual students is $1,500. But the sample means vary: Each random sample 

has a different mean. 

• Some sample means are larger than the population mean of $1,500. Some sample means are 

smaller than the population mean. 

• Some samples give better estimates of the population mean than others. For example, 

$1,325.00 is a much better estimate than $687.50. 

• A lot of variability occurs in the sample means. It is not surprising, therefore, that a sample of 

8 students may give an inaccurate estimate of the mean amount of financial aid received by 

the population. Again, it makes sense that small samples of only 8 students may not 

represent the population accurately. We investigate the factors that affect the variability of 

means from random samples in the module Inference for Means. 

• The variability we see in the means from random samples is due to chance. 

Definitions 

Before we continue our discussion of sampling variability, we introduce some vocabulary. 
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A parameter is a number that describes a population. A statistic is a number that we calculate from a 
sample. 

Let’s use this new vocabulary to rephrase what we already know at this point: 

• When we do inference, the parameter is not known because it is impossible or impractical to gather data 
from everyone in the population. (Note: In each example on this page, we assumed we knew the 
parameter so that we could investigate how statistics relate to the parameter. This is the first step in 
creating a probability model. However, when we do inference, we use a statistic to draw a conclusion 
about an unknown parameter.) 

• We make an inference about the population parameter on the basis of a sample statistic. 
• Statistics from samples vary. 

In this course, if the variable is categorical, the parameter and the statistic are both proportions. If the 
variable is quantitative, the parameter and statistic are both means. 

From our first example: 

• Parameter: A population proportion. For this population of students at a small college, 0.60 are eligible 
for financial aid. 

• Statistics: Sample proportions that vary. In the example, 0.75, 0.625, and 0.375 are all statistics that 
describe the proportion eligible for financial aid in a sample of 8 students. 

From our second example: 

• Parameter: A population mean. For this population of students at a small college, the mean amount of 
financial aid is $1,500. 

• Statistics: Sample means that vary. In the example, $2,087.50, $1,325.00, and $687.50 are all statistics 
that describe the mean amount of financial aid received by a sample of 8 students. 

We use different notation for parameters and statistics: 

(Population) Parameter (Sample) Statistic 

Proportion 

Mean 

Standard Deviation 

Sometimes we refer to the sample statistics as “p-hat” and “x-bar.” 
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Here we use this notation for the information from our examples. 
For our first example: 

• For the population of college students, p = 0.60. 
• For the 3 random samples of 8 students, we have p-hats 

For our second example: 

• For the population of college students, µ = $1,500. 
• For the 3 random samples of 8 students, we have x-bars 

Important Comments about Notation 
Many statistics packages and introductory statistics textbooks use the notation shown in the table. The 

notation for means and standard deviations is common in the field of statistics. However, you will occasionally 
see other notation for proportions. In some statistical material, the Greek letter π represents the population 
proportion and p represents the sample proportion. This can be particularly confusing because p is used in 
some statistical material for the population proportion and in other statistical material for a sample proportion. 
Whenever you work with symbols, always be sure you understand what the symbol represents. You should be 
able to interpret the symbol from the context of the material. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=371#h5p-310 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=371#h5p-311 
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DISTRIBUTION OF SAMPLE PROPORTIONS 
(1 OF 6) 

Learning OUTCOMES 

• Describe the sampling distribution for sample proportions and use it to identify unusual (and 

more common) sample results. 

Introduction 

In this module, Linking Probability to Statistical Inference, we work with categorical variables, so the statistics 
and the parameters will be proportions. In the module Inference for Means, we work with quantitative 
variables, so the statistics and parameters will be means. In the Big Picture, we see that inference is based on 
probability. In this module, we begin the process of developing a probability model to describe the long-run 
behavior of proportions from random samples. 

After we develop a probability model of how sample 
proportions behave, we can answer questions like the 
following: 

• Do the majority of college students qualify for federal student loans? 
• What proportion of all college students in the United States are enrolled at a community college? 

The questions ask us to make an inference about a population. Our answers to these questions will be based 
on a sample. We will never be 100% sure of our answer, so we will make probability statements that describe 
the strength of the evidence and our certainty. 
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Brief Discussion of the Connection between These 
Questions and Probability 

Do the majority of college students qualify for federal student loans? 

• This question asks us to test a claim about college students. The claim is “the majority of college 
students qualify for federal student loans.” To test this claim, suppose we select a large random sample of 
college students and find that 40% of the sample qualify for these loans. A majority requires over 50%; 
40% is definitely not a majority. Can we conclude from this sample that our claim is incorrect? Or could 
this sample have come from a population the majority of which qualify for loans? What is the 
probability that sample proportions will be 0.40 or less if the majority in the population qualify? 

What proportion of all college students in the United States are enrolled at a community college? 

• This question asks us to estimate a population proportion. Suppose we select a large random sample of 
college students and find that 46% are enrolled at a community college. What is the probability that an 
estimate from a sample is within 3% of the population proportion? 

Note: Connected to each inference question about a population proportion, we see a probability question 
about the long-run behavior of sample proportions. We need to understand how proportions from random 
samples relate to the population proportion. We also need to understand how much variability we can expect 
in sample proportions. Therefore, in our early investigations, we will assume we know a population proportion 
and examine what happens when we select random samples from this population. 

Now we begin an investigation of the long-run behavior of sample proportions. 

Example 

Gender in the Population of Part-time College Students 

According to a 2010 report from the American Council on Education, females make up 57% of the 

U.S. college population. With the rising costs of education and a poor economy, many students are 

working more and attending college part time. We anticipate that if we look at the population of 

part-time college students, a larger percentage will be female. Let’s say we predict that 60% of 

part-time college students are female. 
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We don’t have information about the population of part-time college students, so we select a 

random sample of 25 part-time college students and calculate the proportion of the sample that is 

female. We don’t expect the sample proportion to be exactly 0.60. So, how much could the sample 

proportion vary from 0.60 for us to feel confident in our prediction? 

To answer this question, we need to understand how much sample proportions will vary if the 

parameter is 0.60. 

Try It 

Refer to the previous example for the following questions. These questions focus on how the 

proportion of females will vary in random samples if we assume that 0.60 of the population of 

part-time college students is female. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=372#h5p-326 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=372#h5p-327 

Use this simulation to select a random sample of 25 part-time college students. Repeat the selection many 
times to observe how the proportion of females in the samples vary. Then answer the following question. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=372#h5p-328 
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DISTRIBUTION OF SAMPLE PROPORTIONS 
(2 OF 6) 

Learning OUTCOMES 

• Describe the sampling distribution for sample proportions and use it to identify unusual (and 

more common) sample results. 

Recall that our goal is to create a probability model that describes the long-run behavior of proportions from 
random samples. Previously, we used a simulation to collect a few random samples to get acquainted with 
making a distribution of sample proportions. We randomly selected 25 students at a time from a population 
of part-time college students that is 60% female. In the next example, we predict what happens in the long run 
when we select many, many random samples of 25 students at a time from this population. Then we watch a 
simulation to see if our predictions are correct. 

Example 

Predicting the Behavior of Sample Proportions 

Based on our intuition and what we observed with the simulation, we might expect the following 

about the distribution of sample proportions that come from a population where p = 0.60: 

Center: Some sample proportions will be on the low side – such as 0.52 or 0.56 – and others will be 

on the high side – such as 0.64 or 0.68. It is reasonable to expect all the sample proportions in 

repeated random samples to average out to the underlying population proportion, 0.6. In other 

words, the mean of the distribution of sample proportions should be p. 

Spread: For samples of 25, we expect sample proportions of females not to stray too far from the 

population proportion 0.6. Sample proportions lower than 0.44 or higher than 0.72 will be unusual. 

Previously, we took smaller random samples of 8 and observed more variability in the sample 
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proportions. We therefore think that sample size plays a role in the spread of the distribution of 

sample proportions. Smaller samples may be less accurate and more variable than larger samples. 

Shape: Sample proportions closest to 0.6 will be most common, and sample proportions far from 

0.6 in either direction will be progressively less likely. In other words, the shape of the distribution 

of sample proportions may be somewhat bell-shaped. 

Now we use a simulation to collect numerous samples to see what happens in the long run. We use the 
simulation to check whether our intuition about the center, spread, and shape of the distribution of sample 
proportions is right. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=375#oembed-1 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=375#h5p-329 

Try It 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=375#h5p-330 

At this point, we have a good sense of what happens as we take random samples from a population. 
Our simulation suggests that our initial intuition about the shape and center of the distribution of sample 
proportions is correct. 

Now we use another simulation to help us think more precisely about the variability we expect to see in the 
sample proportions. Our intuition tells us that larger samples will better approximate the population, so we 
might expect less variability in large samples. In the next walk-through, we use a simulation to investigate this 
idea. After that walk-through, we tie these ideas to more formal theory about the probability model for the 
long-run behavior of proportions from random samples. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=375#oembed-2 

We are now ready to use what we have observed to develop a formal probability model to describe the 
behavior of sample proportions. First, let’s return to the original question that prompted our investigation of 
sample proportions. 

We based our investigation on the prediction that 60% of part-time college students will be female. In our 
investigation, we asked, How much could the sample proportion vary from a population proportion of 0.60 for us 
to feel confident in our prediction? 

We don’t expect a sample proportion to be exactly equal to the population proportion. But how much error 
seems reasonable? 

We now see that the answer to this question depends on the size of the sample. 

• If we select a random sample of 25 students, the distribution of sample proportions has a standard 
deviation of about 0.1. We can see that most sample proportions fall within 2 standard deviations of 
0.60. Therefore, we might decide that 2 × 0.10 = 0.20 is a reasonable margin of error, so a sample 
proportion between 0.40 and 0.80 is not surprising if 0.60 of all part-time college students are female. 
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• If we select a random sample of 100 students, the distribution of sample proportions has less variability. 
It has a standard deviation of about 0.05. Again we see that most sample proportions fall within 2 
standard deviations of 0.60, so we might decide that 2 × 0.05 = 0.10 is a reasonable amount of error for 
these larger samples. For a sample of 100 students, then, a sample proportion between 0.50 and 0.70 is 
not surprising if 0.60 of all part-time college students are female. 

We discuss this idea further in “Introduction to Statistical Inference” in this unit. 
CC licensed content, Shared previously 
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DISTRIBUTION OF SAMPLE PROPORTIONS 
(3 OF 6) 

Learning OUTCOMES 

• Describe the sampling distribution for sample proportions and use it to identify unusual (and 

more common) sample results. 

Now we practice using a simulation to examine how sample proportions relate to a population proportion and 
to identify unusual sample values. The type of thinking we do here prepares us for the type of thinking we will 
do in statistical inference. 

Example 

Community College Enrollment 

According to a report by the Pew Research Center, in October 2007 about 10% of the 3.1 million 18- 

to 24-year-olds in the United States were enrolled in a community college. Suppose in that year we 

randomly selected 100 young adults in this age group. Suppose 15% of the sample was enrolled in a 

community college. Is this surprising? Well, the sample proportion is off by only 5%. But how much 

error do we expect to see in random samples of this size? We do a simulation to find out. 

Simulation: 

First, we make an assumption about the population proportion. We set p = 0.10 in the simulation. 

(If you would like to work through the example using the simulation, click here). We also set n=100 

to represent the sample size of 100. When we hit the “Run simulation (5,000 samples)” button, the 

simulation simulates the random selection of 5,000 samples. Each sample has 100 young adults 

from this population. For each sample, the simulation plots the proportion who are enrolled at a 

community college. Here is a histogram of the results. 
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Analysis: 

When p=0.10 and n=100, a sample proportion of 0.15 is too far away from 0.10 to be considered a 

typical sample result. It is not part of the central peak of the histogram of sample proportions, but it 

is also not in the small part of the histogram’s tail. Therefore, this result is somewhat unusual, but 

not extremely unusual. In other words, the 5% error in this sample is larger than the error we see in 

most samples, but there are samples with larger amounts of error. 

Conclusion: 

For random samples of 100 young adults, a sample with 15% enrolled in a community college is 

unusual if only 10% of the population overall is enrolled. 
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Example 

Another Look at Community College Enrollment 

Here we think about a more precise way to analyze the results of our simulation. (If you would like 

to work through the example using the simulation, click here). We use the standard deviation of 

the distribution of sample proportions to describe the amount of error we expect to see in random 

samples. We use the simulation again and check “Show standard deviation bar.” 

The mean of the sample proportions is p=0.10. The standard deviation of the sample proportions is 

0.03. The standard deviation describes the average amount of error in sample proportions that is 

due to chance. On average, sample proportions will have a 3% error. A sample proportion of 0.15 

has a 5% error, so this is a larger error than we expect on average. 

Here is another way to look at it. Typical samples have sample proportions within 1 standard 

deviation of 0.10, which is between 0.07 and 0.13 (just subtract 0.03 from 0.10 and then add 0.03 to 

0.10). We can also see that most sample proportions fall within about 2 standard deviations of 0.10, 

which is between 0.04 and 0.16. So it is extremely unusual for sample proportions to have values 

outside of this range. 

Therefore, a sample proportion of 0.15 is not typical, but it is also not extremely unusual, when 

sampling from a population with p=0.10. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=378#h5p-331 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=378#h5p-332 
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Learning OUTCOMES 

• Describe the sampling distribution for sample proportions and use it to identify unusual (and 

more common) sample results. 

The simulations on the previous page reinforce what we have observed about patterns in random sampling. 

• Proportions from random samples approximate the population proportion, p, so sample proportions 
average out to the population proportion. 

• Larger random samples better approximate the population proportion, so large samples have sample 
proportions closer to p. In other words, a sampling distribution for large samples has less variability. 

• The distribution of sample proportions appears normal (at least for the examples we have investigated). 

We can describe the sampling distribution with a mathematical model that has these same features. 

Sampling Distribution of Sample Proportions 

For a categorical variable, imagine a population with a proportion p of successes. (For example, for the variable 
gender, imagine a population of part-time college students with p = 0.60 female. Note that a success is the 
category of interest. It is what we are counting. Here a success is a female.) We create a mathematical model that 
describes the sample proportions from all possible random samples of size n from this population. The model 
has the following center, spread, and shape. 

 
Center: Mean of the sample proportions is p, the population proportion. 

Spread: Standard deviation of the sample proportions is . 
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The standard deviation of the sampling distribution is also called the standard error. 
 
Shape: A normal model is a good fit if the expected number of successes and failures is at least 10. We can 

translate these conditions into formulas: 

Comment 

The distribution of sample proportions for ALL samples of the same size is called the sampling distribution 
of sample proportions. 

In a simulation, we collect thousands of random samples to examine the distribution of sample proportions. 
But when we model this distribution, our model describes the sampling distribution that comes from ALL 
possible random samples of the same size. 

Example 

Applying the Model for the Sampling Distribution 

Let’s apply this model to our previous example about the population of part-time college students 

to see how it compares to our simulation. Recall that we assumed the population of part-time 

college students is 60% female. We selected samples of 25 part-time college students and 

calculated the proportion of females in each sample. 

Simulation: Thousands of 
random samples, each with 25 
individuals 

Mathematical Model: ALL possible 
samples, each with 25 individuals 

Mean of sample proportions 0.6 0.6 

Standard Deviation of sample 
proportions (Standard error) 0.97 

Shape of distribution of sample 
proportions Approximately normal 

Normal because conditions are met: 

Compare the mean and standard deviation we observed in the simulation to the mathematical 
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model. Notice that the conditions are met, so a normal model is a good fit. We see that the model is 

a good description of the center, spread, and shape we observed in the simulation. 

Try It 

According to the National Postsecondary Student Aid Study conducted by the U.S. Department of 

Education in 2008, 62% of graduates from public universities had student loans. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=379#h5p-333 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=379#h5p-334 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=379#h5p-335 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=379#h5p-336 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=379#h5p-337 
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Learning OUTCOMES 

• Use a z-score and the standard normal model to estimate probabilities of specified events. 

From our work on the previous page, we now have a mathematical model of the sampling distribution of 
sample proportions. This model describes how much variability we can expect in random samples from a 
population with a given parameter. If a normal model is a good fit for a sampling distribution, we can apply 
the empirical rule and use z-scores to determine probabilities. Here we link probability to the kind of thinking 
we do in inference. 

Making Connections to Probability Models in Probability 
and Probability Distribution 

Probability describes the chance that a random event occurs. Recall the concept of a random variable from 
the module Probability and Probability Distribution. When a variable is random, it varies unpredictably in the 
short run but has a predictable pattern in the long run. Sample proportions from random samples are a random 
variable. We cannot predict the proportion for any one random sample; they vary. But we can predict the 
pattern that occurs when we select a great many random samples from a population. The sampling distribution 
describes this pattern. When a normal model is a good fit for the sampling distribution, we can use what we 
learned in the previous module to find probabilities. 

Recall probability models we saw in Probability and Probability Distribution. We saw examples of models 
with skewed curves, but we focused on normal curves because we use normal probability models to describe 
sampling distributions in Modules 7 to 10 when we make inferences about a population. As we now know, we 
can use a normal model only when certain conditions are met. Whenever we want to use a normal model, we 
must check the conditions to make sure a normal model is a good fit. 

Here we summarize our general process for developing a probability model for inference. This is essentially 
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the same process we used in the previous module for developing normal probability models from relative 
frequencies. 

If a normal model is a good fit for the sampling distribution, we can standardize the values by calculating 
a z-score. Then we can use the standard normal model to find probabilities, as we did in Probability and 
Probability Distribution. 

The z-score is the error in the statistic divided by the standard error. For sample proportions, we have the 
following formulas. 
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We can also write this as one formula: 

Comment 

This z-score formula is similar to the z-score formula we used in Probability and Probability Distribution. We 
described the z-score as the number of standard deviations a data value is from the mean. Here we can describe 
the z-score as the number of standard errors a sample proportion is from the mean. Because the mean is the 
parameter value, we can say that the z-score is the number of standard errors a sample proportion is from the 
parameter. 

A positive z-score indicates that the sample proportion is larger than the parameter. A negative z-score 
indicates that the sample proportion is smaller than the parameter. 

Example 

Probability Calculations for Community College Enrollment 

Let’s return to the example of community college enrollment. Recall that a 2007 report by the Pew 

Research Center stated that about 10% of the 3.1 million 18- to 24-year-olds in the United States 

were enrolled in a community college. Let’s again suppose we randomly selected 100 young adults 

in this age group and found that 15% of the sample was enrolled in a community college. 

Previously, we determined that 15% is a surprising result. Now we want to be more precise. We ask 

this question: What is the probability that a random sample of this size has 15% or more enrolled in 

a community college? 

To answer this question, we first determine if a normal model is a good fit for the sampling 

distribution. 

Check normality conditions: 

Yes, the conditions are met. The number of expected successes and failures in a sample of 100 are 
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at least 10. We expect 10% of the 100 to be enrolled in a community college, . 

We expect 90% of the 100 to not be enrolled, . 

 

We therefore can use a normal model, which allows us to use a z-score to find the probability. 

 

Find the z-score: 

 

Find the probability using the standard normal model: 

We want the probability that the sample proportion is 15% or more. So we want the probability 

that the z-score is greater than or equal to 1.67. The probability is about 0.0475. 

Conclusion: If it is true that 10% of the population of 18- to 24-year-olds are enrolled at a 

community college, then it is unusual to see a random sample of 100 with 15% or more enrolled. 

The probability is about 0.0475. 

Note: This probability is a conditional probability. Recall from Relationships in Categorical Data with 

Intro to Probability that we write a conditional probability P(A given B) as P(A | B). Here we write 

P(a sample proportion is 0.15 given that the population proportion is 0.10) as 
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Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=382 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=382#h5p-338 
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Learning OUTCOMES 

• Use a z-score and the standard normal model to estimate probabilities of specified events. 

Example 

Probability Calculations: Overweight Men 

Recall the use of data from the Centers for Disease Control and Prevention’s (CDC) National Health 

Interview Survey to estimate behaviors such as alcohol consumption, cigarette smoking, and hours 

of sleep for adults in the United States. In the 2005–2007 report, the CDC estimated that 68% of 

men in the United States are overweight. Suppose we select a random sample of 40 men and find 

that only 58% are overweight. If 68% of U.S. men are overweight, this sample percentage is off by 

10%. Is this much error surprising? What is the probability that a sample proportion will over- or 

underestimate the parameter by more than 10%? 

Check normality conditions: 

Yes, the conditions are met. The number of expected successes and failures in a sample of 40 are at 

least 10. We expect 68% of the 40 to be overweight;  is about 27. We expect 32% 

of the 40 to not be overweight;  is about 13. 

 

So we can use a normal model. This allows us to use a z-score to find the probability. 

 

Find the z-score: 
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We want the error to be more than 10% in either direction, so the sample proportion could be less 

than 0.58 or greater than 0.78. It does not matter which sample proportion we use to find the 

z-score because of the symmetry in the distribution. We arbitrarily chose 0.58. We could also have 

used 0.78. 

 

Find the probability using the standard normal model: 

We want the probability described by the two tails. The probability for one tail is 0.0885, or about 

0.09. So the probability for both tails is about 2 x 0.09 = 0.18. 

 

Conclusion: 

If it is true that 68% of U.S. men are overweight, then there is about an 18% chance that the 

percentage of overweight men in a random sample of 40 men is off by more than 10%. In other 

words, there is about an 18% chance that sample proportions will fall below 0.58 or above 0.78 if 

the true population proportion is 0.68. 

Click here to open this simulation in its own window. 
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One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=384 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=384#h5p-339 

Let’s Summarize 

• Inference is based on probability. 

• A parameter is a number that describes a population. A statistic is a number that describes a sample. In 
inference, we use a statistic to draw a conclusion about a parameter. These conclusions include a 
probability statement that describes the strength of the evidence or our certainty. 

• For a categorical variable, the parameter and the statistics are proportions. For a quantitative variable, the 
parameter and statistics are means. 

• For a given situation, we assume that the parameter is fixed. It does not change. However, statistics 
always vary. When we take random samples, the fluctuation in statistics is due to chance. 

• Larger samples have less variability. 

• For a categorical variable, we assume that the population has a proportion p of successes. When we select 
random samples from this population, the sample proportions have a pattern in the long run. We can 
describe this pattern with a mathematical model of the sampling distribution. The model has the 
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following center, spread, and shape. 
◦ Center: Mean of the sample proportions is p, the population proportion. 

◦ Spread: Standard deviation of the sample proportions is . 

◦ Shape: A normal model is a good fit if the expected number of successes and failures is at least 10. 
We can translate these conditions into formulas: . 

• When a normal model is a good fit for the sampling distribution, we can calculate a z-score. It allows us 
to use the standard normal model to find probabilities associated with the sampling distribution. 

We can also write this as one formula: 
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INTRODUCTION TO STATISTICAL 
INFERENCE 

What you’ll learn to do: Find a confidence interval to 
estimate a population proportion and test a hypothesis 
about a population proportion using a simulated sampling 
distribution or a normal model of the sampling distribution. 

In this section, we will continue studying two flavors of 
inference that go hand in hand: confidence intervals and 
hypothesis tests. Constructing estimated confidence 
intervals help us understand if observed data is unusual or 
typical as well as providing a range of values for which the 
true mean might lie. We also will learn how to construct 
and conduct hypothesis test. These are powerful tools in 
exploring and understanding the real-life implications of 
the data. 
CC licensed content, Shared previously 
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STATISTICAL INFERENCE (1 OF 3) 

Learning OUTCOMES 

• Find a confidence interval to estimate a population proportion when conditions are met. 

Interpret the confidence interval in context. 

From the Big Picture of Statistics, we know that our goal in statistical inference is to infer from the sample 
data some conclusion about the wider population the sample represents. In the first section, “Distribution of 
Sample Proportions,” we investigated the obvious fact that random samples vary. Because different samples 
may lead to different conclusions, we cannot be certain that our conclusions are correct. Statistical inference 
uses the language of probability to say how trustworthy our conclusions are. 

We learn two types of inference: confidence intervals and hypothesis tests. We construct a confidence 
interval when our goal is to estimate a population parameter (or a difference between population parameters). 
We conduct a hypothesis test when our goal is to test a claim about a population parameter (or a difference 
between population parameters). Both types of inference are based on the sampling distribution of sample 
statistics. For both, we report probabilities that state what would happen if we used the inference method 
repeatedly. 

In this section, we build on the ideas in “Distribution of Sample Proportions” to reason as we do in 
inference, but we do not do formal inference procedures now. Instead, we focus on the logic of inference. We 
use categorical data and proportions to investigate the logic of inference. But all of the ideas we discuss here 
apply to quantitative variables and means. 

Confidence Intervals 

When our goal is to estimate a population proportion, we select a random sample from the population and use 
the sample proportion as an estimate. Of course, random samples vary, so we want to include a statement about 
the amount of error that may be present. Because sample proportions vary in a predictable way, we can also 
make a probability statement about how confident we are in the process we used to estimate the population 
proportion. 

We can find many examples of confidence intervals reported in the media. Here is an example. 
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Example 

Do You Have Problems Sleeping? 

The National Sleep Foundation sponsors an annual poll. In 2011, the poll found that “43% of 

Americans between the ages of 13 and 64 say they rarely or never get a good night’s sleep on 

weeknights. More than half (60%) say that they experience a sleep problem every night or almost 

every night (i.e., snoring, waking in the night, waking up too early, or feeling unrefreshed when 

they get up in the morning” (as reported at www.sleepfoundation.org). 

Are these percentages sample statistics or population parameters? These statistics describe the 

responses of a sample of Americans. 

Let’s focus on the 60% who say they experience a sleep problem every night or almost every night. 

Does this mean that 60% of all Americans have this same experience? Well, no. This is a sample 

statistic from a poll. But from this sample, we want to infer what percentage of the population 

does have sleep problems. Since the percentage with sleep problems will differ from one sample to 

the next, we need to make a statement about how much error we might expect between a sample 

percentage and the population percentage. 

In the “Poll Methodology and Definitions” section of the article, we find more detailed information 

about the poll. According to the Sleep Foundation website, “The 2011 Sleep in America® annual poll 

was conducted for the National Sleep Foundation by WB&A Market Research, using a random 

sample of 1,508 adults between the ages of 13 and 64. The margin of error is 2.5 percentage points 

at the 95% confidence level.” 

There is a lot of important information here: 

• The sample is random. 

• The sample size is 1,508. 
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• The margin of error is 2.5%. 

• The confidence level is 95%. 

From this information, we can construct an interval that we are reasonably confident contains the 

population proportion. 

• Sample statistic ± margin of error 

• 60% ± 2.5% 

• 57.5% to 62.5% 

This interval is an example of a confidence interval. We interpret the interval this way: We are 

95% confident that between 57.5% and 62.5% of all Americans experience a sleep problem every 

night or almost every night. 

How confident are we that this interval contains the population proportion? In this case, we are 

95% confident. This means that 95% of the time, a random sample of this size will have at most 

2.5% error. So 95% of these intervals will contain the true population proportion. Another way to 

say this is that this method accurately estimates the population proportion 95% of the time. 

Note: Notice that the sample is a random sample. We can construct a confidence interval only with 

a random sample. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=389#h5p-342 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=389#h5p-343 

Summary 

A sample proportion from a random sample provides a reasonable estimate of the population proportion. 
We do not expect the sample proportion to be exactly equal to the population proportion, but we expect the 
population proportion to be somewhat close to the sample proportion. The purpose of confidence intervals is 
to use the sample proportion to construct an interval of values that we can be reasonably confident contains 
the true population proportion. 

What Is the Connection to the Sampling Distribution? 

Sample proportions are estimates for the population proportion, so each sample proportion has error. For an 
individual sample, we will not know the exact amount of error, so we report a margin of error based on the 
standard error. Recall that the standard error is the standard deviation of sampling distribution. We can view 
the standard error as the typical or average error in the sample proportions. To see how this works, let’s return 
to a familiar sampling distribution. 

Recall our previous investigation of gender in the population of part-time college students. We investigated 
these questions: What proportion of part-time college students are female? If we predict that the proportion is 
0.60, how much error can we expect to be confident of in our prediction? 

We predicted the population proportion was 0.60 and ran a simulation to examine the variability in 
sample proportions for samples of 100 part-time college students. Here is the sampling distribution from the 
simulation. 
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We see that we can be very confident that most samples of this size will have proportions that differ from 0.60 
by at most 2 standard errors. For this simulation, the standard error in sample proportions was about 0.049. 
About 95% of the samples have an error less than 2(0.049) = 0.098 

If we use two standard errors as the margin of error, we can rewrite the confidence interval. 

• sample statistic ± margin of error 
• sample proportion ± 2(standard errors) 
• sample proportion ± 2(0.049) 
• sample proportion ± 0.098 

Different sample proportions give different intervals. For example, if the sample proportion is 0.57, the 
confidence interval is 0.472 to 0.668. Here are our calculations. 

• sample proportion ± margin of error 
• 0.57 ± 2(0.049) 
• 0.57 ± 0.098 

The endpoints of the interval are 0.57 ‑ 0.098 = 0.472 and 0.57 + 0.098 = 0.668. The confidence interval is 
0.472 to 0.668. 

Since about 95% of the samples have at most 9.8% error, we have a 95% confidence interval. Based on 
this sample, we say we are 95% confident that the percentage of part-time college students who are female is 
between 47.2% and 66.8%. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=389#h5p-340 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=389#h5p-341 

CC licensed content, Shared previously 
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STATISTICAL INFERENCE (2 OF 3) 

Learning OUTCOMES 

• Find a confidence interval to estimate a population proportion when conditions are met. 

Interpret the confidence interval in context. 

• Interpret the confidence level associated with a confidence interval. 

95% Confidence Intervals on the Number Line 

Let’s look again at the formula for a 95% confidence interval. 

 
The lower end of the confidence interval is sample proportion – 2(standard error). 
The upper end of the confidence interval is sample proportion + 2(standard error). 
Every confidence interval defines an interval on the number line that is centered at the sample proportion. 

For example, suppose a sample of 100 part-time college students is 64% female. Here is the 95% confidence 
interval built around this sample proportion of 0.64. 

We know the margin of error in a confidence interval comes from the standard error in the sampling 
distribution. For a 95% confidence interval, the margin of error is equal to 2 standard errors. This is shown in 
the following diagram. 
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The width of the interval is the same as the width of the middle 95% of the sampling distribution. The next 
diagram illustrates this relationship. 

When Does a 95% Confidence Interval Contain the True 
Population Proportion? 

If the sample proportion has an error that is less than 2 standard errors, then the 95% confidence interval built 
around this sample proportion will contain the population proportion. 

The sample proportion 0.64 is within 2 standard errors of 0.60, so 0.60 is in the 95% confidence interval 
built around 0.64. 
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In the following figure, the sample proportion 0.72 is not within 2 standard errors of 0.60, so 0.60 is not in 
the 95% confidence interval built around 0.72. 

How Confident Are We That a 95% Confidence Interval 
Contains the Population Proportion? 

Following are three confidence intervals for estimating the proportion of part-time college students who are 
female. We are confident that most of these intervals will contain the population proportion, like the green 
intervals shown here. But some will not contain the population proportion, like the red interval shown here. 
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Of course, we don’t know the population proportion (which is why we want to estimate it with a confidence 
interval!). In reality, we cannot determine if a specific confidence interval does or does not contain the 
population proportion; that’s why we state a level of confidence. For these intervals, we are 95% confident that 
an interval contains the population proportion. In other words, 95% of random samples of this size will give 
confidence intervals that contain the population proportion. The sad news is that we never know if a particular 
interval does or does not contain the unknown population proportion. 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=397 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=397#h5p-344 

Connections to the Theoretical Sampling Distribution and 
Normal Model 

For inference procedures, we work from a mathematical model of the sampling distribution instead of 
simulations. But we always begin our discussion with a simulation to highlight the sampling process. 
Simulations also remind us that the sampling distribution is a probability model because the sampling process 
is random and we look at long-run patterns. 

Recall from “Distribution of Sample Proportions” our discussion of the mathematical model for the 
sampling distribution of sample proportions. For samples of size n, the model has the following center and 
spread, both of which are related to a population with a proportion p of successes. 

Center: Mean of the sample proportions is p, the population proportion. 

Spread: Standard deviation of the sample proportions (also called standard error) is . 

Shape: A normal model is a good fit for the sampling distribution if the expected number of successes and 
failures is at least 10. We can translate these conditions into formulas: 

 
If we can use a normal model for the sampling distribution, then the empirical rule applies. Recall the 

empirical rule from Probability and Probability Distributions, which tells us the percentage of values that fall 
1, 2, and 3 standard deviations from the mean in a normal distribution. 

• 68% of the values fall within 1 standard deviation of the mean. 
• 95% of the values fall within 2 standard deviations of the mean. 
• 99.7% of the values fall within 3 standard deviations of the mean. 
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When we have a normal model for the sampling distribution, the mean of the sampling distribution is the 
population proportion. These ideas translate into the following statements: 

• 68% of the sample proportions fall within 1 standard error of the population proportion. 
• 95% of the sample proportions fall within 2 standard errors of the population proportion. 
• 99.7% of the sample proportions fall within 3 standard errors of the population proportion. 

Therefore, the empirical rule tells us that there is a 95% chance that sample proportions are within 2 
standard errors of the population proportion. A margin of error equal to 2 standard errors, then, will produce 
an interval that contains the population proportion 95% of the time. In other words, we will be right 95% of 
the time. Five percent of the time, the confidence interval will not contain the population proportion, and we 
will be wrong. We can make similar statements for the other confidence levels, but these are less common in 
practice. For now, we focus on the 95% confidence level. 

With the formula for the standard error, we can write a formula for the margin of error and for the 95% 
confidence interval: 

 
Remember that we can make a statement about our confidence that this interval contains the population 

proportion only when a normal model is a good fit for the sampling distribution of sample proportions. 

  |  622



Comment 

You may realize that the formula for the confidence interval is a bit odd, since our goal in calculating the 
confidence interval is to estimate the population proportion, p. Yet the formula requires that we know p. For 
now, we use an estimate for p from a previous study when calculating the confidence interval. This is not 
the usual way statisticians estimate the standard error, but it captures the main idea and allows us to practice 
finding and interpreting confidence intervals. Later, we explore a different way to estimate standard error that 
is commonly used in statistical practice. 

Example 

Overweight Men 

Recall the use of data from the National Health Interview Survey (conducted by the CDC) to 

estimate the prevalence of certain behaviors such as alcohol consumption, cigarette smoking, and 

hours of sleep for adults in the United States. In the 2005–2007 report, the CDC estimated that 

68% of men in the United States are overweight. Suppose we select a random sample of 40 men 

this year and find that 75% are overweight. Using the estimate from the survey that 68% of U.S. 

men are overweight, we calculate the 95% confidence interval and interpret the interval in context. 

Check normality conditions: 

Yes, the conditions are met. The number of expected successes and failures in a sample of 40 are at 

least 10. We expect 68% of the 40 men to be overweight;  is about 27. We expect 

32% of the 40 men to not be overweight;  is about 13. 

We can use a normal model to estimate that 95% of the time a confidence interval with a margin of 

error equal to 2 standard errors will contain the proportion of overweight men in the United States 

this year. 

Calculate the standard error (estimated average amount of error): 

 

Find the 95% confidence interval: 
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Interpretation: 

We are 95% confident that between 60.2% and 89.8% of U.S. men are overweight this year. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=397#h5p-345 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=397#h5p-346 

CC licensed content, Shared previously 
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STATISTICAL INFERENCE (3 OF 3) 

Learning OUTCOMES 

• Test a hypothesis about a population proportion using a simulated sampling distribution or a 

normal model of the sampling distribution. State a conclusion in context. 

Now we focus on the second type of inference: hypothesis testing and the logic behind it. 
In hypothesis testing, we make a claim about a parameter and test it. On this page, we make a claim about 

a population proportion and use a sample proportion from data to test our claim. This is very similar to the 
thinking we did with simulations in the previous module. 

Example 

Test a Claim about Health Insurance Coverage 

With data from the 2010 National Health Interview Survey, the Centers for Disease Control and 

Prevention (CDC) estimates that 22% of U.S. adults (age 18–64) did not have health insurance in 

2010. Is the percentage higher this year? In a hypothesis test, we translate the research question 

into a claim about the population. 

Claim: The percentage of U.S. adults (ages 18–64) who do not have health insurance is higher than 

22% this year. 

To test the claim, we assume that the percentage is 22% this year. Then we gather a random 

sample from the population to test the claim. Suppose 25% of a random sample of 600 U.S. adults 

(age 18–64) do not have health insurance this year. What can we conclude? Obviously, this sample 

has more than 22% uninsured adults. But does this data suggest the percentage of the U.S. adult 

population (age 18–24) who are uninsured is greater than 22%? 
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To test the claim, we begin with a population with  and take random samples of 600 

people at a time. 

• If a sample proportion of 0.25 is likely to occur when sampling from a population with 

, then this sample could have come from a population with 22% uninsured. The 

evidence from the sample is not strong enough to conclude that the population percentage is 

greater than 22%. 

• If a sample proportion is unlikely when sampling from a population with , then 

the sample provides evidence that the proportion of population who are uninsured is greater 

than 22%. 

Likely or unlikely? It depends on how much the sample proportions vary. We need to use a 

simulation or a mathematical model to represent the sampling distribution of sample proportions. 

Simulation: We used a simulation to select 2,000 random samples of 600 people, each from a 

population with . Judging from the simulation, a sample proportion of 0.25 is unlikely. 

Sample proportions of 0.25 or greater do not occur very often. In this simulation, only 90 out of the 

2,000 random samples (4.5%) had proportions of 0.25 or greater. 

Normal Probability Model of the Sampling Distribution: We can also apply what we know 

from our work with a normal model of the sampling distribution. Visually, the simulated sampling 

distribution looks like it has a normal shape. The formal conditions for use of a normal model 

require that the expected count of successes and failures are at least 10. Here we expect 22% (132 

people) of the 600 people to be uninsured. We expect 78% (468 people) of the 600 to be insured. 

Since the sampling distribution meets the conditions for use of a normal model, we can calculate 

the z-score and find the probability that a random sample has a proportion of 0.25 or greater. The 

z-score is 1.76, and our simulation gives a probability of 0.039. 
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Both approaches suggest that a sample proportion of 0.25 is unlikely. We don’t expect to see 25% 

or more uninsured in random samples of 600 very often. We estimate the chances as 4.5% with 

the simulation and only about 3.9% with the normal model. This is so unusual that we conclude the 

data from this year did not come from a population with only 22% uninsured. Our data provides 

strong evidence that more than 22% in the population are uninsured. 

Example 

Test the Claim about Health Insurance Again with Different 
Data 

Now we retest the same claim using different data. 

Claim: The percentage of U.S. adults (ages 18–64) who do not have health insurance is higher than 

22% this year. 
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Suppose 26% of a random sample of 50 U.S. adults (age 18–64) do not have health insurance this 

year. What can we conclude? 

Simulation: We again used a simulation to select 2,000 random samples from a population with 

. This time there are 50 people in each sample. Judging from the simulation, a sample 

proportion of 0.26 is not unlikely. Sample proportions of 0.26 or greater occur frequently. In this 

simulation, 608 (30.4%) of the 2,000 random samples had proportions of 0.26 or greater. 

Normal Probability Model of the Sampling Distribution: Visually, the simulated sampling 

distribution looks like it has a normal shape. The formal conditions for use of a normal model 

require that the expected count of successes and failures is at least 10. Here we expect 22% (11 

people) of the 50 people to be uninsured. We expect 78% (39 people) of the 50 to be insured. Since 

the sampling distribution meets the conditions for use of a normal model, we can calculate the 

z-score and find the probability that a random sample has a proportion of 0.26 or greater. The 

z-score is 0.68, and our simulation gives a probability of 0.25. 
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Both approaches suggest that a sample proportion of 0.26 is not unlikely. It falls within a typical 

range of sample proportions that we expect to see from random samples of 50 people. The z-score 

is 0.68, meaning the sample proportion is less than 1 standard error from 0.22. We also see the 

probability that a random sample has 26% or more uninsured is high: about 30% according to the 

simulation and about 25% according to the normal model. This probability suggests the data from 

this year could have come from a population with only 22% uninsured. Even though 26% are 

uninsured in our sample, our data does not provide strong evidence that more than 22% of the 

population are uninsured this year. 

Comment 

How can a sample proportion of 0.25 be unusual in the first example but a sample proportion of 0.26 not be 
unusual in the second example? These two examples highlight an important point. We have to judge a sample 
result by looking at it in relation to other samples of the same size. In the first example, the samples are large 
(600 adults in each sample), so the sample proportions do not vary much. In this sampling distribution, a 
sample result of 0.25 or greater is unlikely to occur. In the second example, the samples are smaller (only 50 
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adults in each sample), so the sample proportions vary more. In this sampling distribution, a sample result of 
0.26 or greater is likely to occur. 

Try It 

Has the Asthma Rate in Children Decreased? 

With data from the 2009 National Health Interview Survey, the Centers for Disease Control and 

Prevention estimated that 9.4% of U.S. children had asthma. Is the percentage lower this year? 

Suppose we select a random sample of 50 children this year and find that 3 of the 50 have asthma. 

The conditions are not met for use of a normal model because the expected number with asthma 

(0.094 of 50) is less than 10, so we ran a simulation with p = 0.094. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=405#h5p-347 

Is the Asthma Rate Higher for Children Living in Poverty? 

With data from the 2009 National Health Interview Survey, the Centers for Disease Control and Prevention 
estimated that 9.4% of U.S. children had asthma. Is the percentage higher for children living in poverty? 

Suppose we select a random sample of 50 poor children and find that 9 of the 50 have asthma. 
The conditions are not met for use of a normal model, so we ran a simulation with . 
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Try It 

Has the Percentage of Adults (18 and Older) Who Do Not 
Exercise Increased since 2007? 

With data from the 2009 National Health Interview Survey, the Centers for Disease Control and 

Prevention estimated that 33% of U.S. adults (18 and older) do not exercise. Is the percentage 

higher this year? 

Suppose we select a random sample of 100 adults (18 and older) this year. The conditions are met 

for use of a normal model, because we expect 33 (33% of 100) in the sample will not exercise and 

67 (67% of 100) will. Both expected counts are greater than 10. We use a z-score and a standard 

normal curve to assess the evidence. (The standard error is 0.047.) 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=405#h5p-348 

Click here to open the simulation in its own window. 
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Try It 

Has the Percentage of U.S. Adults Who Smoke Decreased 
since 2007? 

With data from the 2005–2007 National Health Interview Survey, the Centers for Disease Control 

and Prevention estimated that about 20% of U.S. adults (18 and older) smoke. Is the percentage 

lower this year? 

Suppose we select a random sample of 100 adults (18 and older) this year. The conditions are met 

for use of a normal model, because we expect 20 smokers (20% of 100) in the sample and 80 

nonsmokers. Both expected counts are greater than 10, so we use a z-score and a standard normal 

curve to assess the evidence. (The standard error is 0.04.) 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=405#h5p-349 

 

Click here to open the normal distribution calculator in its own window. 

Comment 

Are you wondering how extreme the results have to be before we conclude that the result is unusual? Well, it is 
a judgment call. No single cutoff point determines that a result is unusual. But in practice, we often agree on a 
cutoff point before we collect the data. In Inference for One Proportion, we discuss this idea further. However, 
if you are worried about this issue when taking a Checkpoint for this module, you can consider a result to be 
unusual if the probability is less than 5%. 

Let’s Summarize 

Introduction to Statistical Inference 
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The two types of inference procedures in this course are confidence intervals and hypothesis tests. The goal 
of a confidence interval is to estimate a parameter value. The goal of a hypothesis test is to test a claim about 
a parameter. Both types of inference are based on the sampling distribution of sample statistics. For both, we 
report probabilities that state what would happen if we used the inference method many times. 

Confidence Intervals 

The purpose of a confidence interval is to estimate a population parameter on the basis of a sample statistic. 
Sample statistics vary, so there is always error in our estimate, but we will never know how much. We therefore 
use the standard error, which is the average error in our sample estimates, to create a margin of error. The 
margin of error is related to our confidence that the interval contains the population parameter. 

We investigated the 95% confidence interval for a population proportion in depth. When a normal model is 
a good fit for the sampling distribution, the 95% confidence interval has a margin of error equal to 2 standard 
errors. 
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We say we are 95% confident that the calculated interval contains the population proportion, meaning that 

95% of the time, these intervals will actually contain the population proportion, and we will be right. Five 
percent of the time, we will be wrong. We can never tell if a confidence interval does or does not contain the 
population proportion we are trying to estimate. 

Hypothesis Tests 

The purpose of a hypothesis test is to use sample data to test a claim about a population parameter. We 
investigated testing a claim about a population proportion informally. 

We make a claim about a population proportion. From the claim, we state an assumption about the value 
of the population proportion. Could the data have come from this population? Or is the sample proportion 
too far off? It depends on how much random samples from this population vary. We construct a simulation 
or a normal model to represent the sampling distribution that occurs when sampling from a population 
with this assumed value. We make a judgment about whether the data is likely or unlikely to occur in the 
sampling distribution. If the data supports our claim and is unlikely, then we doubt our assumption about the 
population proportion. 

For example, if last year 20% of the U.S adult population smoked, we might claim that the percentage of 
smokers in the United States this year is greater. So in the simulation we set  and see if the data causes 
us to question this claim. 

• If a sample proportion is likely to occur in the sampling distribution, then this sample result could have 
come from a population with the assumed value. In this situation, the data do not lead us to doubt our 
assumption about the value of the parameter. We therefore conclude that the evidence from the sample 
is not strong enough to support our original claim 

• In our example, a sample proportion that is likely to occur means we do not question the assumption 
that we made when we set . We cannot conclude that the percentage of smokers in the United 
States is greater than 20% this year. 

• If a sample proportion supports our claim and is unlikely to occur in the sampling distribution, then it is 
unlikely that this sample result came from a population with the assumed value. In this situation, the 
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data lead us to doubt our assumption about the value of the parameter. We conclude that the evidence 
from the sample is strong enough to support the claim. 

• In our example, a sample proportion that is unusually large means that the data makes us doubt the 
assumption we made when we set . We therefore is probably greater than 20% this year. 

Likely or unlikely? It depends on how much the sample proportions vary. If the normal model is a good fit 
for the sampling distribution, we can calculate a z-score and use a simulation to associate a probability with our 
“likely” or “unlikely” statement. Recall what we learned in “Distribution of Sample Proportions” to calculate 
the z-score. 

 
We can also write this as one formula: 

 
CC licensed content, Shared previously 
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PUTTING IT TOGETHER: LINKING 
PROBABILITY TO STATISTICAL INFERENCE 

Let’s Summarize 

Overview of Statistical Inference 

• Inference is based on probability. 
• A parameter is a number that describes a population. A statistic is a number that describes a sample. In 

inference, we use a statistic to draw a conclusion about a parameter. These conclusions include a 
probability statement that describes the strength of the evidence or our certainty. 

• For a categorical variable, the parameter and statistics are proportions. For a quantitative variable, the 
parameter and statistics are means. 

• For a given situation, we assume the parameter is fixed. It does not change. In contrast, statistics always 
vary. When we take random samples, the fluctuation in statistics is due to chance. We create simulations 
and mathematical models to describe the variability we expect to see in sample statistics. 

Sampling Distribution for a Sample Proportion 

• Larger samples have less variability. 
• For a categorical variable we assume that population has a proportion p of successes. When we select 

random samples from this population, the sample proportions have a pattern in the long run. We can 
describe this pattern with a mathematical model of the sampling distribution. The model has the 
following center, spread, and shape. 

Center: Mean of the sample proportions is p, the population proportion. 

Spread: Standard deviation of the sample proportions is 

Shape: A normal model is a good fit if the expected number of successes and failures is at least 10. We can 
translate these conditions into formulas: 

• When a normal is a good fit for the sampling distribution, we can calculate a z-score, which allows us to 
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use the standard normal model to find probabilities associated with the sampling distribution. 

 
We can also write this as one formula: 

Introduction to Statistical Inference 

This course presents two types of inference procedures: confidence intervals and hypothesis tests. The goal of 
a confidence interval is to estimate a parameter value. The goal of a hypothesis test is to test a claim about a 
parameter. Both types of inference are based on the sampling distribution of sample statistics. For both, we 
report probabilities that state what would happen if we used the inference method many times. 

Confidence Intervals 

The purpose of a confidence interval is to estimate a population parameter on the basis of a sample statistic. 
Sample statistics vary, so there is always error in our estimate, but we never know how much. We therefore use 
the standard error, which is the average error in our sample estimates, to create a margin of error. The margin 
of error is related to our confidence that the interval contains the population parameter. 

We investigated the 95% confidence interval for a population proportion in depth. When a normal model is 
a good fit for the sampling distribution, the 95% confidence interval has a margin of error equal to 2 standard 
errors. 

 
We say we are 95% confident that the calculated interval contains the population proportion. This means 

that 95% of the time, these intervals will actually contain the population proportion, and we will be right. Five 
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percent of the time, we will be wrong. We can never tell if a confidence interval does or does not contain the 
population proportion we are trying to estimate. 

Hypothesis Tests 

The purpose of a hypothesis test is to use sample data to test a claim about a population parameter. We 
investigated testing a claim about a population proportion informally. 

We make a claim about a population proportion. From the claim, we state an assumption about the value 
of the population proportion. Could the data have come from this population? Or is the sample proportion 
too far off? It depends on how much random samples from this population vary. We construct a simulation or 
a normal model to represent the sampling distribution that occurs when sampling from a population with this 
assumed value. We make a judgment about whether the sample proportion is likely or unlikely to occur in the 
sampling distribution. If the data supports our claim and is unlikely, then we doubt our assumption about the 
population proportion. 

Likely or unlikely? It depends on how much the sample proportions vary. If the normal model is a good fit 
for the sampling distribution, we can find a z-score and use a simulation to associate a probability with our 
“likely” or “unlikely” statement. 
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WHY IT MATTERS: INFERENCE FOR ONE 
PROPORTION 

Learning OUTCOMES 

• Recognize situations that call for testing a claim about a population proportion or estimating 

a population proportion. 

Why learn to make inference about population 
proportions? 

In Inference for One Proportion, we focus on making inferences about population proportions. The types of 
research questions we focus on in this module are bolded in the text below. Notice that we are working with 
categorical variables again. 

Type of Question Examples Variable 
Type Unit 

Make an estimate 
about the population 

What proportion of all U.S. adults support the 
death penalty? 

Categorical 
variable 

Inference for 
One Proportion 

What is the average number of hours that community 
college students work each week? 

Quantitative 
variable 

Inference for 
Means 

Test a claim about the 
population 

Do the majority of community college students 
qualify for federal student loans? 

Categorical 
variable 

Inference for 
One Proportion 

Has the average birth weight in a town decreased 
from 3,500 grams? 

Quantitative 
variable 

Inference for 
Means 

Compare two 
populations 

Are teenage girls more likely to suffer from depression 
than teenage boys? 

Categorical 
variable 

Inference for Two 
Proportions 

In community colleges do female students have a 
higher average GPA than male students? 

Quantitative 
variable 

Inference for 
Means 

We will build on what we learned in in the previous module with two additions. 
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• We use more formal vocabulary and notation for hypothesis testing. 
• We will not know the population proportion, so we make some minor adjustments to the model of the 

sampling distribution that we developed in Linking Probability to Statistical Inference. The adjustments 
affect how we calculate the standard error. 

Here again is the Big Picture. We highlighted ideas new to Inference for One Proportion in purple. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=409#h5p-403 
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INTRODUCTION TO ESTIMATING A 
POPULATION PROPORTION 

What you’ll learn to do: Construct a confidence interval to 
estimate a population proportion. 

In this section, we will continue studying the estimation of 
a proportion with a confidence interval. We will recognize 
situations that call for testing a claim about a population or 
estimating a population proportion. We will learn to 
construct a confidence interval to estimate a population 
proportion when certain conditions are met and interpret this 
interval in context. We also will learn how to interpret the 
meaning of a confidence level and relate it to the margin of 
error. These tools can be used in many applications from 
sports attendances to online medical tools. 
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ESTIMATING A POPULATION PROPORTION 
(1 OF 3) 

Learning OUTCOMES 

• Construct a confidence interval to estimate a population proportion when conditions are 

met. Interpret the confidence interval in context. 

Introduction 

In “Estimating a Population Proportion,” we continue our discussion of estimating a population proportion 
with a confidence interval. Recall that the purpose of a confidence interval is to use a sample proportion to 
construct an interval of values that we can be reasonably confident contains the true population proportion. 

The basic idea is summarized here: 

• When we select a random sample from the population of interest, we expect the sample proportion to 
be a good estimate of the population proportion. But we also know that sample proportions vary, so we 
expect some error. (Remember that the error here is due to chance. It is not due to a mistake that anyone 
made.) 

• For a given sample proportion, we will not know the amount of error, so we use the standard error as an 
estimate for the average amount of error we expect in sample proportions. (Recall that the standard error 
is the expected standard deviation of sample proportions when we take many, many random samples.) 

• If a normal model is a good fit for the sampling distribution, then about 95% of sample proportions 
estimate the population proportion within 2 standard errors. We say that we are 95% confident that the 
following interval contains the population proportion. 
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You may realize that this formula for the confidence interval is a bit odd, since our goal in calculating the 

confidence interval is to estimate the population proportion p. Yet the formula requires that we know p. In 
the section “Introduction to Statistical Inference,” we used an estimate for p from a previous study when 
calculating the confidence interval. This is not the usual way statisticians estimate the standard error, but it 
captured the main idea and allowed us to practice finding and interpreting confidence intervals. Now, we 
develop a different way to estimate standard error that is commonly used in statistical practice. 

Example 

Community College Students and Gender 

According to a 2010 report from the American Council on Education, females make up 57% of the 

college population in the United States. Students in a statistics class at Tallahassee Community 

College want to determine the proportion of female students at TCC. They select a random sample 

of 135 TCC students and find that 72 are female, which is a sample proportion of 72 / 135 ≈ 0.533. So 

53.3% of the students in the sample are female. 

What can they conclude about the proportion of females at the college? How confident can they be 

in their estimate? 

To answer these questions, we need to find a confidence interval. 

Checking conditions: 

We learned in Linking Probability to Statistical Inference that a confidence interval comes from a 

normal model of the sampling distribution. Let’s first make sure that a normal model is appropriate 

here. Recall the two conditions for using a normal model for sample proportions: 

• The sample must be random. 

• The expected number of successes in the sample, np, and the expected number of failures, 

n(1 – p), are both greater than or equal to 10. In symbols, this is np ≥ 10 and n(1 − p) ≥ 10. 

Recall that success doesn’t mean good and failure doesn’t mean bad. A success is just what 

we are counting. 

When we try to check these conditions, we have a problem. We do not know p, the population 
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proportion. In fact, p is what we are trying to estimate! So we cannot determine the expected 

number of successes and failures. Our solution to this problem is to adjust these conditions. 

Advanced theory tells us that if the actual number of successes and failures in the sample are 

greater than or equal to 10, then a normal model is still a good fit. 

This sample contains 72 successes (female students) and 63 failures (male students). Both are 

greater than 10. We therefore use the normal model for the sampling distribution. 

Finding the margin of error: 

We know that a sample proportion is only an estimate for the population proportion. We do not 

expect the sample proportion to equal the population proportion, so there is some error due to 

random chance. We use the standard deviation of the sample proportions to describe the amount 

of error we can expect in random samples. We call this the standard error. 

In Linking Probability to Statistical Inference, we learned that the standard error of the sample 

proportion depends on the population proportion and sample size. Here is the formula for the 

standard error: 

 

When we use a normal model for the sampling distribution, 95% of sample proportions estimate 

the population proportion within approximately 2 standard errors. So the margin of error is the 

following: 

 

Now let’s calculate the margin of error for the TCC estimate of 53.3%. Notice that we have the 

same problem we had earlier. We don’t know p, the population proportion. So we can’t calculate 

the margin of error! Our solution to this problem is to estimate the standard error using the sample 

proportion in place of p. We call this the estimated standard error, and the formula is: 
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For this example, the estimated standard error is 

 

So the margin of error for the 95% confidence interval is: 

 

Finding the confidence interval: 

We can interpret the margin of error by saying we are 95% confident that the proportion of all 

students at TCC who are female is within 0.086 of our sample proportion of 0.533. We can then 

write the interval in the following form: 

 

When we add and subtract the margin of error from the sample proportion, the confidence interval 

is 0.447 to 0.619. 

Conclusion: 

We are 95% confident that the proportion of all TCC students who are female is between 0.447 and 

0.619. We can also make this statement using percentages. We are 95% confident that the 

percentage of all TCC students who are female is between 44.7% and 61.9%. 

Recall from Linking Probability to Statistical Inference that 95% confidence means this method 

captures the population proportion about 95% of the time. 

Summary 

Conditions for using the normal model of the sampling 
distribution: 

In Linking Probability to Statistical Inference, we saw that a normal model describes the behavior of sample 
proportions if np ≥ 10 and n(1 − p) ≥ 10. These formulas say that the expected number of successes and failures 
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in the sample must be 10 or greater. In Inference for One Proportion, we will never know the value of the 
population proportion p, so we estimate p with a sample proportion. Now we will assume that we can use a 
normal model if . 

These formulas say that the actual number of successes and failures in the sample are 10 or greater. 

95% confidence interval for estimating population proportion p: 

In Linking Probability to Statistical Inference, we learned that the error in an estimate is related to the spread in 
the sampling distribution. We saw that the standard error of the sampling distribution of sample proportions 
is given by this formula: 

 
In Inference for One Proportion, we are estimating the population proportion p. So we estimate the standard 

error by replacing p with the sample proportion, which affects the margin of error in the confidence interval. 
We have the following adjustment to the confidence interval formula: 

 

Try It 

Foothill College’s athletic department wants to calculate the proportion of students who have 

attended a women’s basketball game at the college. They use student email addresses, randomly 

choose 220 students, and email them. Of the 145 who responded, 22 had attended a women’s 

basketball game. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=412#h5p-404 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=412#h5p-405 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=412#h5p-406 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=412#h5p-407 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=412#h5p-408 
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ESTIMATING A POPULATION PROPORTION 
(2 OF 3) 

Learning OUTCOMES 

• Construct a confidence interval to estimate a population proportion when conditions are 

met. Interpret the confidence interval in context. 

• For a confidence interval, interpret the meaning of a confidence level and relate it to the 

margin of error. 

Introduction 

On the previous page, we estimated a population proportion by calculating the approximate 95% confidence 
interval. 

We used the following formula: 

 
This formula is valid only if we can use a normal distribution to model the sampling distribution for the 

sample proportions. We can use the normal model if we have at least 10 successes and at least 10 failures in the 
sample. 

Recall that we used 2 estimated standard errors because of the empirical rule. The empirical rule says that 
approximately 95% of all sample proportions will fall within 2 standard errors of the population proportion. 
So 95% of the sample proportions have an error that is less than 2 standard errors. On the previous page, we 
made a slight modification using the estimated standard error where we replaced  with . 

We often use the 95% confidence level, but in practice you may also see 90% and 99% confidence levels. On 
this page, we begin to investigate the impact of changing the confidence level on the confidence interval. 
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Example 

Community College Students and Gender 

Recall from the previous page that students in a statistics class at Tallahassee Community College 

wanted to determine the proportion of female students at TCC. They selected a random sample of 

135 students and found that 72 were female. Previously, we calculated an approximate 95% 

confidence interval. We estimated that the proportion of all TCC students who are female is 

between 0.447 and 0.619. 

Now we calculate the 90% confidence interval for the proportion of all TCC students who are 

female. Because the results from the sample are the same, we do not need to check the conditions 

for a normal model for the sampling distribution. We already verified that these conditions are met. 

Because the sample proportion is the same, the estimated standard error will also be the same: 

 

But the margin of error will change. We estimated the margin of error for the 95% confidence 

interval by multiplying the estimated standard error by 2. Now we need to determine the z-scores 

that will give us the middle 90% of the normal distribution. 
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Technology is used to determine the z-scores that mark off the middle 90% of the sampling 

distribution. The z-scores are ±1.65. Using this value in place of 2 in the margin of error gives us a 

90% confidence interval: 

95% confidence interval: 0.533 ± 2(0.043) ≈ 0.533 ± 0.086 = (0.447, 0.619) 

90% confidence interval: 0.533 ± 1.65(0.043) ≈ 0.533 ± 0.07 = (0.463, 0.603) 

Note: Frequently, you will see the z-scores that mark off the middle 90% of the sample proportions 

represented more precisely as ±1.645. 

What is the impact of decreasing the confidence level to 90%? 

The 90% interval allows a smaller margin for error than the 95% interval. The 90% confidence 

interval is narrower than the 95% confidence interval. It may seem like an advantage, but there is a 

trade-off because we now have less confidence that the interval contains the population 

proportion. This is an important point. Lower confidence means smaller margin of error. We 

investigate this idea in more depth later. 

Confidence Interval Formula 

Since we are no longer restricting our confidence level to 95%, we can generalize the formula for a confidence 
interval: 

659  |  



 
We use a little subscript c on the z-score, Zc , to emphasize that the z-score is connected to the confidence 

level. When giving the value of Zc, we always use the positive z-score. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=414#h5p-409 

Comment 

Technology often uses 3 decimal places for Zc. 
For our most common confidence levels, the values of Zc are: 

90% confidence interval: Zc ≈ 1.645 
95% confidence interval: Zc ≈ 1.960 (2 is a rough approximation; 1.960 is more accurate) 
99% confidence interval: Zc ≈ 2.576 

So when you calculate the confidence interval, rounding will slightly affect the values in your interval. 
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ESTIMATING A POPULATION PROPORTION 
(3 OF 3) 

Learning OUTCOMES 

• Construct a confidence interval to estimate a population proportion when conditions are 

met. Interpret the confidence interval in context. 

• For a confidence interval, interpret the meaning of a confidence level and relate it to the 

margin of error. 

Introduction 

On the previous page, we learned the general formula for a confidence interval for a population proportion: 

 
Recall that, for our most common confidence levels, the values of Zc are: 

90% confidence interval: Zc ≈ 1.645 
95% confidence interval: Zc ≈ 1.960 
99% confidence interval: Zc ≈ 2.576 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=415#h5p-410 

Confidence Interval Width 

The goal of the confidence interval is to estimate the population proportion. If the interval contains the 
population proportion, a small amount of error means we have a more precise estimate. Narrower confidence 
intervals give more precise interval estimates for the population proportion, but this is true only if the intervals 
contain the population proportion. 

We saw in the previous activity that a lower confidence level corresponds to a smaller margin of error. In 
general, 90% confidence intervals are narrower than 95% confidence intervals because there is a smaller margin 
of error. But we are less confident that 90% confidence intervals contain the population proportion. Recall that 
in the long run, 10% of these intervals will not contain the population proportion at all! We therefore have to 
choose between precision and confidence. 

Of course, ideally, we would like to have a narrow interval and a high level of confidence. We can achieve this 
by increasing the size of the sample. 

Example 

College Students and Marijuana Legalization 

National surveys show that about 43% of American adults support the legalization of marijuana. 

What proportion of students at Capital Community College support the legalization of marijuana? 

Suppose students conduct two surveys. For one survey, they randomly select a sample of 100 

students. For the other survey, they randomly select a sample of 400 students. Surprisingly, in both 
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surveys, the proportion in favor of legalization is 55%. The students calculate the 95% confidence 

interval for both surveys. 

What is the impact of the size of the sample on the confidence interval? 

For the sample of size 100, the confidence interval is 

 

For the sample of size 400, the confidence interval is 

 

Notice that the larger sample gives a smaller margin of error. The margin of error for the sample of 

400 is half that of the sample of 100. 

This makes sense. Our intuition tells us that larger samples should give more precise estimates of 

the population proportion. We also saw this in Module 7 where we investigated the impact of 

sample size on the variability in the sample proportions. We saw that proportions from larger 

samples vary less. If there is less variability in the sampling distribution, the standard error is 

smaller. Since we use the standard error to find the margin of error, larger samples will produce a 

smaller margin of error. 

More specifically, we can see that a sample four times larger gives a margin of error half as large 

because we divide by , the square root of the sample size, in the formula. Similarly, a sample 

nine times larger gives a margin of error one-third as large. 

In general, to decrease the margin of error, we can increase the sample size or decrease the 

confidence level. We always prefer to increase the sample size because it allows us to keep a higher 

level of confidence. We want a higher level of confidence because the confidence level is the 

proportion of intervals that actually contains the population proportion. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=415#h5p-411 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=415#h5p-412 

Let’s Summarize 

• The sample proportion is a point estimate for the population proportion, but it is almost always wrong. 
We therefore use an interval estimate, called a confidence interval, to give us a range of values for the 
population proportion. 

• We can calculate a confidence interval for a population proportion when we can use a normal 
distribution to model the long-run behavior of sample proportions. We can use a normal distribution 
model when there are at least 10 observed successes and 10 observed failures. 

• The interpretation of a confidence interval depends on the confidence level. For example, using a 95% 
confidence level, we are 95% confident that the population proportion falls within the interval. 

• A confidence interval is a sample proportion plus or minus a margin of error. The margin of error is 
related to the confidence level. For a 95% confidence level, the margin of error is approximately two 
standard errors. The formula is 
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• Lower confidence levels and higher sample sizes lead to narrower confidence intervals. A narrower 
confidence interval has a smaller error. Since we want to be confident that an interval accurately 
estimates the population proportion, high levels of confidence are desirable. So larger sample sizes are the 
preferred way to decrease the error and create narrower confidence intervals. 
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INTRODUCTION TO HYPOTHESIS TESTING 

What you’ll learn to do: Given a claim about a population, 
construct an appropriate set of hypotheses to test and 
properly interpret p values and Type I / II errors. 

Hypothesis testing is part of inference. Given a claim 
about a population, we will learn to determine the 
null and alternative hypotheses. We will recognize 
the logic behind a hypothesis test and how it relates 
to the P-value as well as recognizing type I and type 
II errors. These are powerful tools in exploring and 
understanding data in real-life. 
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HYPOTHESIS TESTING (1 OF 5) 

Learning OUTCOMES 

• When testing a claim, distinguish among situations involving one population mean, one 

population proportion, two population means, or two population proportions. 

• Given a claim about a population, determine null and alternative hypotheses. 

Introduction 

In inference, we use a sample to draw a conclusion about a population. Two types of inference are the focus of 
our work in this course: 

• Estimate a population parameter with a confidence interval. 
• Test a claim about a population parameter with a hypothesis test. 

We can also use samples from two populations to compare those populations. In this situation, the two types 
of inference focus on differences in the parameters. 

• Estimate a difference in population parameters with a confidence interval. 
• Test a claim about a difference in population parameters with a hypothesis test. 

In “Estimating a Population Proportion,” we learned to estimate a population proportion using a 
confidence interval. For example, we estimated the proportion of all Tallahassee Community College students 
who are female and the proportion of all American adults who used the Internet to obtain medical information 
in the previous month. We will revisit confidence intervals in future modules. 

Now we look more carefully at how to test a claim with a hypothesis test. Statistical investigations begin with 
research questions. We begin our discussion of hypothesis tests with research questions that require us to test a 
claim. Later we look at how a claim becomes a hypothesis. 
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Example 

Research Questions about Testing Claims 

Let’s revisit some of the research questions from examples in the module Types of Statistical 

Studies and Producing Data that involve testing a claim. 

Is the average course load for community college students less than 12 semester hours? This 

question contains a claim about a population mean. The question contains information about the 

population, the variable, and the parameter. The population is all community college students. The 

variable is course load in semester hours. It is quantitative, so the parameter is a mean. The claim is, 

“The mean course load for all community college students is less than 12 semester hours.” 

Do the majority of community college students qualify for federal student loans? This question 

contains a claim about a population proportion and information about the population, the variable, 

and the parameter. The population is all community college students. The variable is Qualify for 

federal student loan (yes or no). It is categorical, so the parameter is a proportion. The claim is, “The 

proportion of community college students who qualify is greater than 0.5” (a majority means more 

than half, or 0.5). 

In community colleges, do female students and male students have different mean GPAs? This 

question contains a claim that compares two population means. Again, we see information about 

the populations, the variable, and the parameters. The two populations are female community 

college students and male community college students. The variable is GPA. It is quantitative, so 
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the parameters are means. The claim is, “The mean GPA for female community college students is 

different from the mean GPA for male community college students.” Notice that the claim compares 

the two population means, but there is no claim about the numeric value of either mean. 

Are college athletes more likely than nonathletes to receive academic advising? This question 

contains a claim that compares two population proportions: college athletes and college students 

who are not athletes. The variable is Receive academic advising (yes or no). The variable is 

categorical, so the parameters are proportions. The claim is, “The proportion of all college athletes 

who receive academic advising is greater than the proportion of all nonathletes in college who 

receive academic advising.” Notice that the claim compares two population proportions, but there is 

no claim about the numeric value of either proportion. 

In the case of testing a claim about a single population parameter, we compare it to a numeric 

value. In the case of testing a claim about two population parameters, we compare them to each 

other. 

Try It 

Identify the type of claim in each research question below. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=419#h5p-413 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=419#h5p-414 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=419#h5p-415 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=419#h5p-416 

Next Steps: Forming Hypotheses 

We already know that in inference we use a sample to draw a conclusion about a population. If the research 
question contains a claim about the population, we translate the claim into two related hypotheses. 

The null hypothesis is a hypothesis about the value of the parameter. The null hypothesis relates to our 
work in Linking Probability to Statistical Inference where we drew a conclusion about a population parameter 
on the basis of the sampling distribution. We started with an assumption about the value of the parameter, 
then used a simulation to simulate the selection of random samples from a population with this parameter 
value. Or we used the parameter value in a mathematical model to describe the center and spread of the 
sampling distribution. The null hypothesis gives the value of the parameter that we will use to create the sampling 
distribution. In this way, the null hypothesis states what we assume to be true about the population. 

The alternative hypothesis usually reflects the claim in the research question about the value of the 
parameter. The alternative hypothesis says the parameter is “greater than” or “less than” or “not equal to” the 
value we assume to true in the null hypothesis. 
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Example 

Stating Hypotheses 

Here are the hypotheses for the research questions from the previous example. The null hypothesis 

is abbreviated H0. The alternative hypothesis is abbreviated Ha. 

Is the average course load for community college students less than 12 semester hours? 

H0: The mean course load for community college students is equal to 12 semester hours. 

Ha: The mean course load for community college students is less than 12 semester hours. 

Do the majority of community college students qualify for federal student loans? 

H0: The proportion of community college students who qualify for federal student loans is 

0.5. 

Ha: The proportion of community college students who qualify for federal student loans is 

greater than 0.5. 

When the research question contains a claim that compares two populations, the null hypothesis 

states that the parameters are equal. We will see in Modules 9 and 10 that we translate the null 

hypothesis into a statement about “no difference” in parameter values. We revisit this idea in more 

depth later. 

In community colleges, do female students and male students have different mean GPAs? 

H0: In community colleges, female and male students have the same mean GPAs. 

Ha: In community colleges, female and male students have different mean GPAs. 

Are college athletes more likely than nonathletes to receive academic advising? 

H0: In colleges, the proportion of athletes who receive academic advising is equal to the 

proportion of nonathletes who receive academic advising. 

Ha: In colleges, the proportion of athletes who receive academic advising is greater than the 

proportion of nonathletes who receive academic advising. 

Comment 

Here are some general observations about null and alternative hypotheses. 
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• The hypotheses are competing claims about the parameter or about the comparison of parameters. 
• Both hypotheses are statements about the same population parameter or same two population 

parameters. 
• The null hypothesis contains an equal sign. 
• The alternative hypothesis is always an inequality statement. It contains a “less than” or a “greater than” 

or a “not equal to” symbol. 
• In a statistical investigation, we determine the research question, and thus the hypotheses, before we 

collect data. 

The process of forming hypotheses, collecting data, and using the data to draw a conclusion about the 
hypotheses is called hypothesis testing. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=419#h5p-417 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=419#h5p-418 

Try It 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=419#h5p-419 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=419#h5p-420 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 
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HYPOTHESIS TESTING (2 OF 5) 

Learning OUTCOMES 

• Recognize the logic behind a hypothesis test and how it relates to the P-value. 

In this section, our focus is hypothesis testing, which is part of inference. On the previous page, we practiced 
stating null and alternative hypotheses from a research question. Forming the hypotheses is the first step in 
a hypothesis test. Here are the general steps in the process of hypothesis testing. We will see that hypothesis 
testing is related to the thinking we did in Linking Probability to Statistical Inference. 

Step 1: Determine the hypotheses. 
The hypotheses come from the research question. 
Step 2: Collect the data. 
Ideally, we select a random sample from the population. The data comes from this sample. We calculate a 

statistic (a mean or a proportion) to summarize the data. 
Step 3: Assess the evidence. 
Assume that the null hypothesis is true. Could the data come from the population described by the null 

hypothesis? Use simulation or a mathematical model to examine the results from random samples selected 
from the population described by the null hypothesis. Figure out if results similar to the data are likely or 
unlikely. Note that the wording “likely or unlikely” implies that this step requires some kind of probability 
calculation. 

Step 4: State a conclusion. 
We use what we find in the previous step to make a decision. This step requires us to think in the following 

way. Remember that we assume that the null hypothesis is true. Then one of two outcomes can occur: 

• One possibility is that results similar to the actual sample are extremely unlikely. This means that the 
data do not fit in with results from random samples selected from the population described by the null 
hypothesis. In this case, it is unlikely that the data came from this population, so we view this as strong 
evidence against the null hypothesis. We reject the null hypothesis in favor of the alternative hypothesis. 

• The other possibility is that results similar to the actual sample are fairly likely (not unusual). This means 
that the data fit in with typical results from random samples selected from the population described by 
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the null hypothesis. In this case, we do not have evidence against the null hypothesis, so we cannot reject 
it in favor of the alternative hypothesis. 

Example 

Data Use on Smart Phones 

According to an article by Andrew Berg (“Report: Teens Texting More, Using More Data,” Wireless 

Week, October 15, 2010), Nielsen Company analyzed cell phone usage for different age groups using 

cell phone bills and surveys. Nielsen found significant growth in data usage, particularly among 

teens, stating that “94 percent of teen subscribers self-identify as advanced data users, turning to 

their cellphones for messaging, Internet, multimedia, gaming, and other activities like downloads.” 

The study found that the mean cell phone data usage was 62 MB among teens ages 13 to 17. A 

researcher is curious whether cell phone data usage has increased for this age group since the 

original study was conducted. She plans to conduct a hypothesis test. 

Step 1: Determine the hypotheses. 

The null hypothesis is often a statement of “no change,” so the null hypothesis will state that there 

is no change in the mean cell phone data usage for this age group since the original study. In this 

case, the alternative hypothesis is that the mean has increased from 62 MB. 

H0: The mean data usage for teens with smart phones is still 62 MB. 
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Ha: The mean data usage for teens with smart phones is greater than 62 MB. 

Step 2: Collect the data. 

The next step is to obtain a sample and collect data that will allow the researcher to test the 

hypotheses. The sample must be representative of the population and, ideally, should be a random 

sample. In this case, the researcher must randomly sample teens who use smart phones. 

For the purposes of this example, imagine that the researcher randomly samples 50 teens who use 

smart phones. She finds that the mean data usage for these teens was 75 MB with a standard 

deviation of 45 MB. Since it is greater than 62 MB, this sample mean provides some evidence in 

favor of the alternative hypothesis. But the researcher anticipates that samples will vary when the 

null hypothesis is true. So how much of a difference will make her doubt the null hypothesis? Does 

she have evidence strong enough to reject the null hypothesis? 

Step 3: Assess the evidence. 

To assess the evidence, the researcher needs to know how much variability to expect in random 

samples when the null hypothesis is true. She begins with the assumption that H0 is true – in this 

case, that the mean data usage for teens is still 62 MB. She then determines how unusual the 

results of the sample are: If the mean for all teens with smart phones actually is 62 MB, what is the 

chance that a random sample of 50 teens will have a sample mean of 75 MB or higher? Obviously, 

this probability depends on how much variability there is in random samples of this size from this 

population. 

The probability of observing a sample mean at least this high if the population mean is 62 MB is 

approximately 0.023 (later topics explain how to calculate this probability). The probability is quite 

small. It tells the researcher that if the population mean is actually 62 MB, a sample mean of 75 MB 

or higher will occur only about 2.3% of the time. This probability is called the P-value. 

Note: The P-value is a conditional probability, discussed in the module Relationships in Categorical 

Data with Intro to Probability. The condition is the assumption that the null hypothesis is true. 

Step 4: Conclusion. 

The small P-value indicates that it is unlikely for a sample mean to be 75 MB or higher if the 

population has a mean of 62 MB. It is therefore unlikely that the data from these 50 teens came 

from a population with a mean of 62 MB. The evidence is strong enough to make the researcher 

doubt the null hypothesis, so she rejects the null hypothesis in favor of the alternative hypothesis. 

The researcher concludes that the mean data usage for teens with smart phones has increased 

since the original study. It is now greater than 62 MB. (P = 0.023) 
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Comment 

Notice that the P-value is included in the preceding conclusion, which is a common practice. It allows the 
reader to see the strength of the evidence used to draw the conclusion. 

How Small Does the P-Value Have to Be to Reject the Null 
Hypothesis? 

A small P-value indicates that it is unlikely that the actual sample data came from the population described 
by the null hypothesis. More specifically, a small P-value says that there is only a small chance that we will 
randomly select a sample with results at least as extreme as the data if H0 is true. The smaller the P-value, the 
stronger the evidence against H0. 

But how small does the P-value have to be in order to reject H0? 
In practice, we often compare the P-value to 0.05. We reject the null hypothesis in favor of the alternative if 

the P-value is less than (or equal to) 0.05. 
Note: This means that sampling variability will produce results at least as extreme as the data 5% of the time. 

In other words, in the long run, 1 in 20 random samples will have results that suggest we should reject H0 even 
when H0 is true. This variability is just due to chance, but it is unusual enough that we are willing to say that 
results this rare suggest that H0 is not true. 

Statistical Significance: Another Way to Describe Unlikely 
Results 

When the P-value is less than (or equal to) 0.05, we also say that the difference between the actual sample 
statistic and the assumed parameter value is statistically significant. In the previous example, the P-value is 
less than 0.05, so we say the difference between the sample mean (75 MB) and the assumed mean from the 
null hypothesis (62 MB) is statistically significant. You will also see this described as a significant difference. 
A significant difference is an observed difference that is too large to attribute to chance. In other words, it 
is a difference that is unlikely when we consider sampling variability alone. If the difference is statistically 
significant, we reject H0. 

Other Observations about Stating Conclusions in a 
Hypothesis Test 

In the example, the sample mean was greater than 62 MB. This fact alone does not suggest that the data 
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supports the alternative hypothesis. We have to determine that the data is not only larger than 62 MB but larger 
than we would expect to see in a random sampling if the population mean is 62 MB. We therefore need to 
determine the P-value. If the sample mean was less than or equal to 62 MB, it would not support the alternative 
hypothesis. We don’t need to find a P-value in this case. The conclusion is clear without it. 

We have to be very careful in how we state the conclusion. There are only two possibilities. 

• We have enough evidence to reject the null hypothesis and support the alternative hypothesis. 
• We do not have enough evidence to reject the null hypothesis, so there is not enough evidence to 

support the alternative hypothesis. 

If the P-value in the previous example was greater than 0.05, then we would not have enough evidence to 
reject H0 and accept Ha. In this case our conclusion would be that “there is not enough evidence to show that 
the mean amount of data used by teens with smart phones has increased.” Notice that this conclusion answers 
the original research question. It focuses on the alternative hypothesis. It does not say “the null hypothesis is 
true.” We never accept the null hypothesis or state that it is true. When there is not enough evidence to reject 
H0, the conclusion will say, in essence, that “there is not enough evidence to support Ha.” But of course we 
will state the conclusion in the specific context of the situation we are investigating. 

We compared the P-value to 0.05 in the previous example. The number 0.05 is called the significance level
for the test, because a P-value less than or equal to 0.05 is statistically significant (unlikely to have occurred 
solely by chance). The symbol we use for the significance level is α (the lowercase Greek letter alpha). We 
sometimes refer to the significance level as the α-level. We call this value the significance level because if the P-
value is less than the significance level, we say the results of the test showed a significance difference. 

If the P-value ≤ α, we reject the null hypothesis in favor of the alternative hypothesis. 
If the P-value > α, we fail to reject the null hypothesis. 
In practice, it is common to see 0.05 for the significance level. Occasionally, researchers use other significance 

levels. In particular, if rejecting H0 will be controversial or expensive, we may require stronger evidence. In this 
case, a smaller significance level, such as 0.01, is used. As with the hypotheses, we should choose the significance 
level before collecting data. It is treated as an agreed-upon benchmark prior to conducting the hypothesis test. 
In this way, we can avoid arguments about the strength of the data. 

We look more at how to choose the significance level later. On this page we continue to use a significance 
level of 0.05. 

 
First, work through the interactive exercise below to practice the four steps of hypothesis testing and related 

concepts and terms. 

  |  682



An interactive H5P element has been excluded from this version of the text. You can view it 

online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=421#h5p-421 

Try It 

For many years, working full-time has meant working 40 hours per week. Nowadays, it seems that 

corporate employers expect their employees to work more than this amount. A researcher decides 

to investigate this hypothesis. 

H0: The average time full-time corporate employees work per week is 40 hours. 

Ha: The average time full-time corporate employees work per week is more than 40 hours. 

To substantiate his claim, the researcher randomly selects 250 corporate employees and finds that 

they work an average of 47 hours per week with a standard deviation of 3.2 hours. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=421#h5p-422 

According to the Centers for Disease Control (CDC), roughly 21.5% of all high school seniors in the 

United States have used marijuana. (The data were collected in 2002. The figure represents those 

who smoked during the month prior to the survey, so the actual figure might be higher.) A 

sociologist suspects that the rate among African American high school seniors is lower. In this case, 

then, 

H0: The rate of African American high-school seniors who have used marijuana is 21.5% 

(same as the overall rate of seniors). 

Ha: The rate of African American high-school seniors who have used marijuana is lower than 

21.5%. 

To check his claim, the sociologist chooses a random sample of 375 African American high school 

seniors,and finds that 16.5% of them have used marijuana. 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=421#h5p-423 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 
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HYPOTHESIS TESTING (3 OF 5) 

Learning OUTCOMES 

• Recognize the logic behind a hypothesis test and how it relates to the P-value. 

Example 

Community College Students and Federal Student Loans 

According to the Project on Student Debt, “at least one million community college students, one in 

10 nationally, do not have access to federal student loans – the safest, most affordable way to 

borrow for college. A new issue brief from the Project on Student Debt finds that almost a quarter 

of all community colleges do not participate in federal loan programs, thereby forcing needy 

  |  686



students to resort to riskier, more expensive options such as private student loans and credit cards” 

(SOURCE: PROJECT ON STUDENT DEBT, PRESS RELEASE, APRIL 17, 2008). 

Is the proportion of community colleges that do not participate in federal loan programs less than 

25%, as reported? Let’s conduct a hypothesis test to find out. 

Step 1: Determine the Hypotheses. 

H0: The proportion of community colleges that do not participate in federal loan programs is 

0.25. 

Ha: The proportion of community colleges that do not participate in federal loan programs is 

less than 0.25. 

Step 2: Collect the data. 

For the purposes of this example, imagine that we select a random sample of 80 community 

colleges from the over 1,100 community colleges in the United States. Of the 80, suppose that 16 do 

not participate in federal loan programs, so the sample proportion is 0.20. 

Because this sample proportion is less than 0.25, it provides evidence in favor of the alternative 

hypothesis. But we anticipate that samples will vary when the null hypothesis is true. How much of 

a difference will make us doubt the null hypothesis? Do we have evidence strong enough to reject 

the null hypothesis and accept the alternative hypothesis? 

Step 3: Assess the evidence. 

To assess the evidence, we need to know how much variability to expect in random samples when 

the null hypothesis is true. We begin with the assumption that H0 is true. In this case, we assume 

that 25% of community colleges do not participate in the federal loan programs. We then 

determine how unusual the results of the sample are. We ask, If the proportion of all community 

colleges without federal loan programs is 0.25, what is the chance that the proportion in a random 

sample of 80 community colleges is 0.20 or less? Obviously, this probability depends on how much 

variability exists in random samples of this size from this population. 

The probability of observing a sample proportion at least this small if the population proportion is 

0.25 is approximately 0.15 (upcoming topics explain how to calculate this probability). This is the P-

value. It tells us that if the population proportion is actually 0.25, we will see a sample proportion of 

0.20 or less about 15% of the time in random sampling. 

Note: The P-value is a conditional probability. The condition is the assumption that the null 

hypothesis is true – in this case, that the population proportion is 0.25. 

Step 4: Conclusion. 
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Note that the P-value is fairly large, so it is not surprising to see a sample proportion of 0.20 or 

lower if the population proportion is 0.25. If we use a significance level of 0.05, the P-value is larger 

than 0.05, so the difference we observe between the sample proportion and the assumed 

population proportion is not statistically significant. Differences this large can be explained by 

chance. We fail to reject the null hypothesis. Here is our conclusion. 

The data do not provide significant evidence that the proportion of community colleges without 

federal loan programs is less than 25%. 

Note: The conclusion answers our original research question. It focuses on the claim that is the 

alternative hypothesis. It does not say “the null hypothesis is true.” We never accept the null 

hypothesis or state that it is true. When there is not enough evidence to reject H0, the conclusion 

will say, in essence, “that there is not enough evidence to support Ha.” 

Summary 

Now that we have seen two hypothesis tests, let’s summarize the steps: 
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You can review these steps and try some more practice with P-values in the following interactives: 
An interactive H5P element has been excluded from this version 

of the text. You can view it online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=424#h5p-424 

Try It 

The following two hypotheses are tested: 

H0: The proportion of U.S. adults who support gay marriage is roughly 50%. 

Ha: The proportion of U.S. adults who support gay marriage is above 50% (i.e., the majority 
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support). 

Suppose a survey was conducted in which a random sample of 1,100 U.S. adults were asked about 

their opinions on gay marriage, and based on the data, the P-value was found to be 0.002. 

Comment: Throughout this activity, use a 0.05 (5%) significance level (cutoff). 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=424#h5p-425 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=424#h5p-426 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=424#h5p-427 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=424#h5p-428 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 
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HYPOTHESIS TESTING (4 OF 5) 

Learning OUTCOMES 

• Recognize the logic behind a hypothesis test and how it relates to the P-value. 

Hypothesis testing appears in all upcoming modules. The process and the logic of the hypothesis test will 
always be the same, but the details will differ somewhat. 

Every hypothesis test will use a P-value to make a decision about the population(s). The P-value is the 
connection between probability and decision-making in inference. Now we discuss the P-value in more depth 
and relate it to our work in Linking Probability to Statistical Inference. Later we use both simulations and 
statistical software to find the P-value. 

To develop a better understanding of the P-value, we need to return to the idea of a sampling distribution 
and a normal probability model. These are ideas from Linking Probability to Statistical Inference. 

Example 

What Is a P-value? 

Let’s return to the familiar example of the 2008 presidential election. In that election, newspapers 

reported that Obama received 40% of the white male vote. We wonder if a smaller percentage of 

white males will support Obama in the 2012 election. We define the following hypotheses and 

conduct a hypothesis test. 

H0: The proportion of white males voting for Obama in 2012 is 0.40. 

Ha: The proportion of white males voting for Obama in 2012 is less than 0.40. 

We select a random sample of 200 white male voters and find that 35% plan to vote for Obama in 

2012. Clearly 35% is less than 40%. But is the difference statistically significant or due to chance? If 
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the population proportion is 0.40, we expect to see sample proportions vary from this. But will 

sample proportions as small as or smaller than 0.35 occur very often? What’s the probability? 

The probability (P-value) is about 0.078. 

The P-value is the chance that a random sample of 200 white males will have, at most, 35% 

supporting Obama if 40% of this population supports Obama. This is quite a mouthful. We find 

that visualizing the sampling distribution helps us understand the P-value. Here is a diagram that 

may be helpful in interpreting the P-value. 

In general, the P-value is the probability that sample results are as extreme as or more extreme 

than the result observed in the data if the null hypothesis is true. The phrase “as extreme as or 

more extreme than” means further from the center of the sampling distribution in the direction of 

the alternative hypothesis. 

Note: You may recall the concept of a conditional probability from Relationships in Categorical Data 

with Intro to Probability. The P-value is a conditional probability. The condition is “the null 

hypothesis is true.” 

Note: We can also look at the P-value in terms of error in the sample proportion. If 40% of this 

population support Obama, then our sample with 35% supporting Obama has a 5% error. From this 

perspective, the P-value is the chance that sample proportions supporting the alternative 

hypothesis have as much as or more error than the data. For this example, the P-value describes 

sample proportions less than 0.40 that deviate 0.05 or more from 0.40. This describes sample 

proportions at or below 0.35. 
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Comment 

Recall in Linking Probability to Statistical Inference when we investigated the conditions that make a normal 
model a good fit for the sampling distribution. When a normal model is a good fit, we use it to find 
probabilities. In the Obama example, we can see that a normal model is a good fit for the sampling distribution, 
so we can find the P-value by calculating the z-score and using a simulation. Below we created a diagram to 
remind you how the sampling distribution relates to the standard normal model of z-scores. We will find P-
values in this way in “Hypothesis Test for a Population Proportion,” but for now, we focus on what the P-value 
is and how to use it to make decisions. 

Notice that for our example , the P-value from the standard normal curve (0.074) is not exactly equal to the 
relative frequency in the simulated sampling distribution (0.078), but it is close. Both of these values represent 
estimates of the probability we want. 

In hypothesis testing you use the standard normal curve (or a similar model) to find P-values. For this reason, 
you will frequently see the P-value defined in terms of the “test statistic,” which is the z-score in our example. 
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Here is a common definition: The P-value is the probability of obtaining a test statistic at least as extreme as 
the one that was actually observed, assuming the null hypothesis is true. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=428#h5p-429 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=428#h5p-430 

Comment 

The purpose of the hypothesis test is to describe the degree of evidence that the sample provides against the 
null hypothesis. The P-value does this job. In the next two activities, we do not give a P-value. We want you 
to practice visualizing the sampling distribution to identify the most convincing evidence against the null 
hypothesis. This type of visualization is important to understanding the ideas we discuss on this page. 
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Example 

More on Using the P-Value to Make a Decision 

Let’s finish the hypothesis test about white male support for Obama. 

H0: The proportion of white males voting for Obama in 2012 is 0.40. 

Ha: The proportion of white males voting for Obama in 2012 is less than 0.40. 

Recall our random sample of 200 white male voters with 35% planning to vote for Obama in 2012. 

Clearly 35% is less than 40%, but is the difference statistically significant or due to chance? 

The probability (P-value) is about 0.078. What can we conclude? A small P-value indicates that the 

data are unlikely to occur in random sampling from a population in which the null hypothesis is 

true. So the smaller the P-value, the stronger the evidence is against the null hypothesis. 

Do you view something that happens 7.8% of the time as “unlikely”? This is a judgment call. There 

is no right or wrong answer. Because this is a judgment call, we will often agree to a definition of 

“unlikely” before we run the test. This is the significance level, α. The significance level is a 

benchmark for how small the P-value must be in order for us to say results are statistically 

significant. It gives us a cutoff point for rejecting the null hypothesis. Here are the decision-making 

rules that we gave earlier. 

If the P-value ≤ α, we reject the null hypothesis in favor of the alternative hypothesis. 

If the P-value > α, we fail to reject the null hypothesis. 

Why do these “rules” make sense? Again, we think that visualizing a simulation of the sampling 

distribution is helpful. 
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Keep in mind that all of the sample proportions in the simulation did actually occur when we 

selected random samples from a population with P = 0.40. Results less than 0.40 support the 

alternative hypothesis but to varying degrees. To provide enough evidence to reject the null 

hypothesis and accept the alternative hypothesis, results have to be smaller than 0.40 and “rare.” 

When we set the significance level at 5% (α = 0.05), we agree to view results that occur less than 

5% of the time as “rare enough” to question whether the sample came from the population 

described by the null. So we reject the null hypothesis and accept the alternative. If we set the 

significance level at 10% (α = 0.10), we have changed the definition of rare. As you can see, different 

significance levels can lead to different conclusions. 

Here are our conclusions for the two different levels of significance. 

At the 5% level, our poll results are not statistically significant (P-value = 0.078). We conclude that 

white male support for Obama will not be less than 40% in 2012. (Note: This statement says we do 

not have enough evidence to accept Ha. Because Ha is related to the claim or hunch that motivated 

our investigation, we state our conclusion in terms of Ha.) 

At the 10% level, our poll results are statistically significant (P-value = 0.078). We conclude that 

white male support for Obama will be less than 40% in 2012. (Note: This statement says we have 

enough evidence to accept Ha. Again, the conclusion is stated in terms of Ha.) 
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How Do You Choose a Level of Significance? 

Remember that the purpose of the hypothesis test is to describe the degree of evidence that the sample provides 
against the null hypothesis. The P-value does this. How small a P-value is convincing evidence? It depends on 
the situation and the opinions of the people who use the hypothesis test to make a decision. If rejecting the null 
hypothesis will be controversial or expensive, then the users of the test results may want to use a smaller level of 
significance than we did. For this reason, we always report the P-value with our conclusions so that the people 
who use the results of the test can determine if the P-value is strong enough evidence for their purpose. 

Later we discuss other considerations for choosing a level of significance. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=428#h5p-431 

Summary interactive 

The following interactive will walk you through each of these steps again, helping you to practice with these 
terms and concepts. 

An interactive H5P element has been excluded from this version of the text. You can view it 

online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=428#h5p-432 

 
CC licensed content, Shared previously 
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Feedback for question #1 

In 2008 polls indicated that 54% of Americans thought that the death penalty was applied fairly in the U.S. This year in a poll of 

1,000 Americans 58% feel the death penalty is applied fairly in the U.S. Has the percentage of the public with this opinion increased 

since 2008? We test the following hypotheses. 

Ho: The proportion of Americans this year who feel the death penalty is applied fairly in the U.S. is 0.54. 

Ha: The proportion of Americans this year who feel the death penalty is applied fairly in the U.S. is greater than 0.54. 

The P-value is 0.036. The next three questions present three different interpretations of this P-value. Indicate if each interpretation 

is valid or invalid. 

The probability that more than 54% of Americans now feel the death penalty is applied fairly is 0.036. 

• This statement says that the P-value is the probability that the alternative hypothesis is true. We cannot make a probability 

statement about whether a hypothesis is true or false. To make a probability statement we need a random event. The random 

event is random sampling. So the P-value makes a probability statement about random samples. 

If 54% of Americans still feel the death penalty is applied fairly, then there is a 3.6% chance that poll results will show 58% or more 

with this opinion. 

• This is a good interpretation of the P-value. The P-value is the probability that poll results will be more extreme than the latest 

poll if opinions have not changed since 2008. “More extreme” means in the direction of the alternative hypothesis. In this 

case, “more extreme” means “greater than.” 

There is a 3.6% chance that the null hypothesis is true if random poll results are greater than 54%. 

• This statement says that the P-value is the probability that the null is true, blah, blah. We cannot make a probability statement 

about whether a hypothesis is true or false. We could say, “there is a 3.6% chance that if the null hypothesis is true, random 

poll results will be greater than 58%.” 
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HYPOTHESIS TESTING (5 OF 5) 

Learning OUTCOMES 

• Recognize type I and type II errors. 

What Can Go Wrong: Two Types of Errors 

Statistical investigations involve making decisions in the face of uncertainty, so there is always some chance of 
making a wrong decision. In hypothesis testing, two types of wrong decisions can occur. 

If the null hypothesis is true, but we reject it, the error is a type I error. 
If the null hypothesis is false, but we fail to reject it, the error is a type II error. 
The following table summarizes type I and II errors. 
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Comment 

Type I and type II errors are not caused by mistakes. These errors are the result of random chance. The data 
provide evidence for a conclusion that is false. It’s no one’s fault! 

Example 

Data Use on Smart Phones 

In a previous example, we looked at a hypothesis test about data usage on smart phones. The 

researcher investigated the claim that the mean data usage for all teens is greater than 62 MBs. 

The sample mean was 75 MBs. The P-value was approximately 0.023. In this situation, the P-value 

is the probability that we will get a sample mean of 75 MBs or higher if the true mean is 62 MBs. 

Notice that the result (75 MBs) isn’t impossible, only very unusual. The result is rare enough that 

we question whether the null hypothesis is true. This is why we reject the null hypothesis. But it is 

possible that the null hypothesis hypothesis is true and the researcher happened to get a very 

unusual sample mean. In this case, the result is just due to chance, and the data have led to a type I 

error: rejecting the null hypothesis when it is actually true. 
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Example 

White Male Support for Obama in 2012 

In a previous example, we conducted a hypothesis test using poll results to determine if white male 

support for Obama in 2012 will be less than 40%. Our poll of white males showed 35% planning to 

vote for Obama in 2012. Based on the sampling distribution, we estimated the P-value as 0.078. In 

this situation, the P-value is the probability that we will get a sample proportion of 0.35 or less if 

0.40 of the population of white males support Obama. 

At the 5% level, the poll did not give strong enough evidence for us to conclude that less than 40% 

of white males will vote for Obama in 2012. 

Which type of error is possible in this situation? If, in fact, it is true that less than 40% of this 

population support Obama, then the data led to a type II error: failing to reject a null hypothesis 

that is false. In other words, we failed to accept an alternative hypothesis that is true. 

We definitely did not make a type I error here because a type I error requires that we reject the null 

hypothesis. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=434#h5p-433 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=434#h5p-434 

What Is the Probability That We Will Make a Type I Error? 

If the significance level is 5% (α = 0.05), then 5% of the time we will reject the null hypothesis (when it is true!). 
Of course we will not know if the null is true. But if it is, the natural variability that we expect in random 
samples will produce rare results 5% of the time. This makes sense because we assume the null hypothesis is 
true when we create the sampling distribution. We look at the variability in random samples selected from the 
population described by the null hypothesis. 

Similarly, if the significance level is 1%, then 1% of the time sample results will be rare enough for us to reject 
the null hypothesis hypothesis. So if the null hypothesis is actually true, then by chance alone, 1% of the time 
we will reject a true null hypothesis. The probability of a type I error is therefore 1%. 

In general, the probability of a type I error is α. 

What Is the Probability That We Will Make a Type II Error? 

The probability of a type I error, if the null hypothesis is true, is equal to the significance level. The probability 
of a type II error is much more complicated to calculate. We can reduce the risk of a type I error by using a 
lower significance level. The best way to reduce the risk of a type II error is by increasing the sample size. In 
theory, we could also increase the significance level, but doing so would increase the likelihood of a type I error 
at the same time. We discuss these ideas further in a later module. 
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Try It 

A Fair Coin 

In the long run, a fair coin lands heads up half of the time. (For this reason, a weighted coin is not 

fair.) We conducted a simulation in which each sample consists of 40 flips of a fair coin. Here is a 

simulated sampling distribution for the proportion of heads in 2,000 samples. Results ranged from 

0.25 to 0.75. 

https://assessments.lumenlearning.com/assessments/3910 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=434#h5p-435 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=434#h5p-436 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=434#h5p-437 
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Comment 

In general, if the null hypothesis is true, the significance level gives the probability of making a type I error. If 
we conduct a large number of hypothesis tests using the same null hypothesis, then, a type I error will occur 
in a predictable percentage (α) of the hypothesis tests. This is a problem! If we run one hypothesis test and the 
data is significant at the 5% level, we have reasonably good evidence that the alternative hypothesis is true. If we 
run 20 hypothesis tests and the data in one of the tests is significant at the 5% level, it doesn’t tell us anything! 
We expect 5% of the tests (1 in 20) to show significant results just due to chance. 

Example 

Cell Phones and Brain Cancer 

The following is an excerpt from a 1999 New York Times article titled “Cell phones: questions but no 

answers,” as referenced by David S. Moore in Basic Practice of Statistics (4th ed., New York: W. H. 

Freeman, 2007): 

A hospital study that compared brain cancer patients and a similar group without brain 

cancer found no statistically significant association between cell phone use and a group of 

brain cancers known as gliomas. But when 20 types of glioma were considered separately, 

an association was found between cell phone use and one rare form. Puzzlingly, however, 
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this risk appeared to decrease rather than increase with greater mobile phone use. 

This is an example of a probable type I error. Suppose we conducted 20 hypotheses tests with the 

null hypothesis “Cell phone use is not associated with cancer” at the 5% level. We expect 1 in 20 

(5%) to give significant results by chance alone when there is no association between cell phone 

use and cancer. So the conclusion that this one type of cancer is related to cell phone use is 

probably just a result of random chance and not an indication of an association. 

Click here to see a fun cartoon that illustrates this same idea. 

Try It 

How Many People Are Telepathic? 

Telepathy is the ability to read minds. Researchers used Zener cards in the early 1900s for 

experimental research into telepathy. 

In a telepathy experiment, the “sender” looks at 1 of 5 Zener cards while the “receiver” guesses the 

symbol. This is repeated 40 times, and the proportion of correct responses is recorded. Because 

there are 5 cards, we expect random guesses to be right 20% of the time (1 out of 5) in the long 

run. So in 40 tries, 8 correct guesses, a proportion of 0.20, is common. But of course there will be 

variability even when someone is just guessing. Thirteen or more correct in 40 tries, a proportion of 

0.325, is statistically significant at the 5% level. When people perform this well on the telepathy 

test, we conclude their performance is not due to chance and take it as an indication of the ability 

to read minds. 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=434#h5p-438 

In the next section, “Hypothesis Test for a Population Proportion,” we learn the details of hypothesis testing 
for claims about a population proportion. Before we get into the details, we want to step back and think more 
generally about hypothesis testing. We close our introduction to hypothesis testing with a helpful analogy. 

Courtroom Analogy for Hypothesis Tests 

When a defendant stands trial for a crime, he or she is innocent until proven guilty. It is the job of the 
prosecution to present evidence showing that the defendant is guilty beyond a reasonable doubt. It is the job of 
the defense to challenge this evidence to establish a reasonable doubt. The jury weighs the evidence and makes 
a decision. 

When a jury makes a decision, it has only two possible verdicts: 

• Guilty: The jury concludes that there is enough evidence to convict the defendant. The evidence is so 
strong that there is not a reasonable doubt that the defendant is guilty. 

• Not Guilty: The jury concludes that there is not enough evidence to conclude beyond a reasonable 
doubt that the person is guilty. Notice that they do not conclude that the person is innocent. This 
verdict says only that there is not enough evidence to return a guilty verdict. 

How is this example like a hypothesis test? 
The null hypothesis is “The person is innocent.” The alternative hypothesis is “The person is guilty.” The 

evidence is the data. In a courtroom, the person is assumed innocent until proven guilty. In a hypothesis test, 
we assume the null hypothesis is true until the data proves otherwise. 

The two possible verdicts are similar to the two conclusions that are possible in a hypothesis test. 
Reject the null hypothesis: When we reject a null hypothesis, we accept the alternative hypothesis. This 

is like a guilty verdict. The evidence is strong enough for the jury to reject the assumption of innocence. In a 
hypothesis test, the data is strong enough for us to reject the assumption that the null hypothesis is true. 

Fail to reject the null hypothesis: When we fail to reject the null hypothesis, we are delivering a “not 
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guilty” verdict. The jury concludes that the evidence is not strong enough to reject the assumption of 
innocence, so the evidence is too weak to support a guilty verdict. We conclude the data is not strong enough 
to reject the null hypothesis, so the data is too weak to accept the alternative hypothesis. 

How does the courtroom analogy relate to type I and type II errors? 
Type I error: The jury convicts an innocent person. By analogy, we reject a true null hypothesis and accept 

a false alternative hypothesis. 
Type II error: The jury says a person is not guilty when he or she really is. By analogy, we fail to reject a null 

hypothesis that is false. In other words, we do not accept an alternative hypothesis when it is really true. 

Let’s Summarize 

In this section, we introduced the four-step process of hypothesis testing: 
Step 1: Determine the hypotheses. 

• The hypotheses are claims about the population(s). 
• The null hypothesis is a hypothesis that the parameter equals a specific value. 
• The alternative hypothesis is the competing claim that the parameter is less than, greater than, or not 

equal to the parameter value in the null. The claim that drives the statistical investigation is usually 
found in the alternative hypothesis. 

Step 2: Collect the data. 
Because the hypothesis test is based on probability, random selection or assignment is essential in data 

production. 
Step 3: Assess the evidence. 

• Use the data to find a P-value. 
• The P-value is a probability statement about how unlikely the data is if the null hypothesis is true. 
• More specifically, the P-value gives the probability of sample results at least as extreme as the data if the 

null hypothesis is true. 

Step 4: Give the conclusion. 

• A small P-value says the data is unlikely to occur if the null hypothesis is true. We therefore conclude 
that the null hypothesis is probably not true and that the alternative hypothesis is true instead. 

• We often choose a significance level as a benchmark for judging if the P-value is small enough. If the P-
value is less than or equal to the significance level, we reject the null hypothesis and accept the alternative 
hypothesis instead. 
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• If the P-value is greater than the significance level, we say we “fail to reject” the null hypothesis. We never 
say that we “accept” the null hypothesis. We just say that we don’t have enough evidence to reject it. This 
is equivalent to saying we don’t have enough evidence to support the alternative hypothesis. 

• Our conclusion will respond to the research question, so we often state the conclusion in terms of the 
alternative hypothesis. 

Inference is based on probability, so there is always uncertainty. Although we may have strong evidence 
against it, the null hypothesis may still be true. If this is the case, we have a type I error. Similarly, even if we 
fail to reject the null hypothesis, it does not mean the alternative hypothesis is false. In this case, we have a type 
II error. These errors are not the result of a mistake in conducting the hypothesis test. They occur because of 
random chance. 
CC licensed content, Shared previously 
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INTRODUCTION TO HYPOTHESIS TEST FOR 
A POPULATION PROPORTION 

What you’ll learn to do: Conduct a hypothesis test for a 
population proportion. 

When we have real world data on population proportions 
we will have to learn when a situation calls for testing a 
hypothesis about a population proportion, conduct a 
hypothesis test and state a conclusion in context. We will 
interpret the P-value as a conditional probability in the 
context of a hypothesis test. We will then distinguish the 
difference between statistical significance from practical 
importance. 
CC licensed content, Shared previously 
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HYPOTHESIS TEST FOR A POPULATION 
PROPORTION (1 OF 3) 

Learning outcomes 

• Recognize when a situation calls for testing a hypothesis about a population proportion. 

• Conduct a hypothesis test for a population proportion. State a conclusion in context. 

Introduction 

In the previous section, we introduced the concept of hypothesis testing. In a hypothesis test, we test 
competing claims about a population parameter or the difference between two population parameters. 

We looked at four hypothesis testing situations: 

• Testing a claim about a single population proportion. 
• Testing a claim about a single population mean. 
• Testing a claim about the difference between two population proportions. 
• Testing a claim about the difference between two population means. 

Although we follow the four steps we examined in the previous section, “Hypothesis Testing,” for each of 
these situations, the specifics for each test are different. In this section, we look at the hypothesis test for a 
single population proportion. When we conduct a test about a population proportion, we are working with 
a categorical variable. Later in the course, after we have learned a variety of hypothesis tests, we will need 
to be able to identify which test is appropriate for which situation. Identifying the variable as categorical 
or quantitative is an important component of choosing an appropriate hypothesis test. We also have to 
distinguish between testing a claim about a population proportion and estimating a population proportion. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=440#h5p-439 

Once we know that we are dealing with a single population proportion, we can conduct the hypothesis 
test. Recall that the first step of a hypothesis test is to determine the hypotheses. In the previous section, 
our hypotheses were in words. In this section, we use symbols. Recall that the symbol for the population 
proportion is p. 

Example 

Health Insurance Coverage 

According to the Government Accountability Office, 80% of all college students ages 18 to 23 had 
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health insurance coverage in 2006. The Patient Protection and Affordable Care Act passed in 2010 

allowed young people under age 26 to stay on their parents’ health insurance policy. Has the 

proportion of college students ages 18 to 23 who have health insurance increased since 2006? A 

survey of 800 randomly selected college students ages 18 to 23 indicated that 83% of them had 

health insurance coverage. 

H0: p = 0.80 (No change; the proportion of college students ages 18 to 23 who have health 

insurance is still 80%.) 

Ha: p > 0.80 (The proportion of college students ages 18 to 23 who have health insurance is 

now greater than 80%.) 

The results of the survey do not affect our hypotheses. We use the results to determine whether to 

reject the null hypothesis in favor of the alternative hypothesis. 
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Example 

Internet Access 

According to the Kaiser Family Foundation, 84% of U.S. children ages 8 to 18 had Internet access at 

home as of August 2009. Researchers wonder if this percentage has changed since then. They 

survey 500 randomly selected children ages 8 to 18 and find that 430 of them have Internet access 

at home. The research question helps us form our hypotheses: 

H0: p = 0.84 (No change; the proportion of children with Internet access at home is the 

same.) 

Ha: p ≠ 0.84 (The proportion of children with Internet access at home has changed since 

2009.) 

Again, the results of the survey do not affect our hypotheses. 
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Example 

Jury Selection 

Jefferson Parish is a suburb of New Orleans, Louisiana. Its population is about 23% African 

American. Is there evidence that African Americans are underrepresented on juries in murder trials 

in Jefferson Parish? According to a New York Times article (June 4, 2007), there were 18 murder 

trials in Jefferson Parish between 1986 and 2007 in which the ethnicity of the jurors was known. 

Ten of the juries had no black jurors, 7 juries had 1 black juror, and 1 jury had 2 black jurors. The 

research question helps us to form our hypotheses: 

H0: p = 0.23 (No difference; the proportion of African Americans on juries in murder trials is 

the same as the proportion of African Americans in the population.) 

Ha: p < 0.23 (The proportion of African Americans on juries in murder trials is less than the 

proportion of African Americans in the population.) 

Summary of Hypotheses 

As a reminder, the null hypothesis is always a statement of equality. The alternative hypothesis is always a 
statement of inequality, using <, >, or ≠. So hypotheses take the form: 
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H0: p = p0 

Ha: p < p0 or p > p0 or p ≠ p0 

We use p0 to represent the proportion from the null hypothesis. 

College Students and Federal Grants 

According to the American Association of Community Colleges, 23% of community college students receive 
federal grants. The California Community College Chancellor’s Office anticipates that the percentage is 
smaller for California community college students. They collect a sample of 1,000 community college students 
in California and find that 210 received federal grants. 
CC licensed content, Shared previously 
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HYPOTHESIS TEST FOR A POPULATION 
PROPORTION (2 OF 3) 

Learning outcomes 

• Conduct a hypothesis test for a population proportion. State a conclusion in context. 

On the previous page, we looked at determining hypotheses for testing a claim about a population proportion. 
On this page, we look at how to determine P-values. 

As we learned earlier, the P-value for a hypothesis test for a population proportion comes from a normal 
model for the sampling distribution of sample proportions. The normal distribution is an appropriate model 
for this sampling distribution if the expected number of success and failures are both at least 10. Using the 
symbols for the population proportion and sample size, a normal curve is a reasonable model if the following 
conditions are met: np ≥ 10 and n(1 − p) ≥ 10. 

Example 

Health Insurance Coverage 

Recall this example from the previous page. According to the Government Accountability Office, 

80% of all college students (ages 18 to 23) had health insurance in 2006. The Patient Protection 

and Affordable Care Act of 2010 allowed young people under age 26 to stay on their parents’ health 

insurance policy. Has the proportion of college students (ages 18 to 23) who have health insurance 

increased since 2006? A survey of 800 randomly selected college students (ages 18 to 23) indicated 

that 83% of them had health insurance. Use a 0.05 level of significance. 

Step 1: Determine the hypotheses. 

We did this on the previous page. The hypotheses are: 
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H0: p = 0.80 

Ha: p > 0.80 

where p is the proportion of college students ages 18 to 23 who have health insurance now. 

Step 2: Collect the data. 

In this random sample of 800 college students, 83% have health insurance. If 80% of all college 

students have health insurance, is this 3% difference statistically significant or due to chance? We 

need to find a P-value to answer this question. We must determine if we can use this data in a 

hypothesis test. 

First note that the data are from a random sample. That is essential. Now we need to determine if 

a normal model is a good fit for the sampling distribution. Since we assume that the null hypothesis 

is true, we build the sampling distribution with the assumption that 0.80 is the population 

proportion. We check the following conditions, using 0.80 for p: 

Because these are both more than 10, we can use the normal model to find the P-value. 

Step 3: Assess the evidence. 

Now that we know that the normal distribution is an appropriate model for the sampling 

distribution, our next goal is to determine the P-value. The first step is to determine the z-score for 

the observed sample proportion (the data). 

The sample proportion is 0.83. Recall from Linking Probability to Statistical Inference that the 

formula for the z-score of a sample proportion is as follows: 

 

For this example, we calculate: 

 

This z-score is called the test statistic. It tells us the sample proportion of 0.83 is about 2.12 
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standard errors above the population proportion given in the null hypothesis. We use this statistic 

to find the P-value. The P-value describes the strength of the evidence against the null hypothesis. 

We use the simulation that we first saw in Probability and Probability Distributions to determine 

the P-value. The P-value is a probability that describes the likelihood of the data if the null 

hypothesis is true. More specifically, the P-value is the probability that sample results are as 

extreme as or more extreme than the data if the null hypothesis is true. The phrase “as extreme as 

or more extreme than” means farther from the center of the sampling distribution in the direction 

of the alternative hypothesis. 

In this situation, we want the area to the right of 0.83 because the alternative hypothesis is a 

“greater-than” statement. The P-value, in this case, is the probability of getting a sample proportion 

equal to or greater than 0.83. Since we are using the standard normal curve to find probabilities, 

the P-value is the area to the right of the Z = 2.12. 

We can find this area with a simulation or other technology. 
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The P-value is approximately 0.0170. Thus, the probability that a random sample proportion is at 

least as large as 0.83 is about 0.017 (if the population proportion is actually 0.80). If the null 

hypothesis is true, we observe sample proportions this high or higher only about 1.7% of the time. 

The P-value is our evidence of statistical significance. It is a measure of whether random chance can 

explain the deviation of the data from the null hypothesis. 

Step 4: State a conclusion. 

To determine our conclusion, we compare the P-value to the level of significance, α = 0.05. If our 

data are predicted to occur by chance less than 5% of the time, we have reason to reject the null 

hypothesis and accept the alternative. Since our P-value of 0.017 is less than 0.05, we reject the null 

hypothesis. We state our conclusion in terms of the alternative hypothesis. We also state it in 

context. 

The data from this study provides strong evidence that the proportion of all college students who 

have health insurance is now greater than 0.80 (P-value = 0.017). The 0.03 increase in the 

proportion who have health insurance since 2008 is statistically significant at the 0.05 level. 

Alternatively, we can give the conclusion using the percentage rather than the decimal: 

The data from this study provides strong evidence that the percentage of all college students who 
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have health insurance is now greater than 80% (P-value = 0.017). The 3% increase in the 

percentage who have health insurance since 2008 is statistically significant at the 5% level. 

Important Note 

A hypothesis test can be one-tailed or two-tailed. The previous example was a one-tailed hypothesis test. The 
P-value was the area of the right tail. If the inequality in the alternative hypothesis is < or >, the test is one-
tailed. If the inequality is ≠, the test is two-tailed. 

Example 

Internet Access 

Recall the following example from the previous page. According to the Kaiser Family Foundation, 
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84% of U.S. children iages 8 to 18 had Internet access at home as of August 2009. Researchers 

wonder if this percentage has changed since then. They survey 500 randomly selected children 

(ages 8 to 18) and find that 430 of them have Internet access at home. 

Use a level of significance of α = 0.05 for this hypothesis test. 

Step 1: Determine the hypotheses. 

H0: p = 0.84 

Ha: p ≠ 0.84 

where p is the proportion of children ages 8 to 18 with Internet access at home now. 

Step 2: Collect the data. 

Our sample is random, so there is no problem there. Again, we want to determine whether the 

normal model is a good fit for the sampling distribution of sample proportions. Based on the null 

hypothesis, we will use 0.84 as our population proportion to check the conditions. 

 

Because these are both more than 10, we can use the normal model to find the P-value. 

Step 3: Assess the evidence. 

Since we can use the normal model, we need to calculate the z-test statistic for the sample 

proportion. We first calculate the sample proportion. 

 

Next, we calculate our Z-score, the test statistic: 

 

The sample proportion of 0.86 is about 1.22 standard errors above the population proportion given 

in the null hypothesis. Now we calculate the P-value. This is where the two-tailed nature of the 

test is important. The P-value is the probability of seeing a sample proportion at least as extreme as 

the one observed from the data if the null hypothesis is true. 
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In the previous example, only sample proportions higher than the null proportion were evidence in 

favor of the alternative hypothesis. In this example, any sample proportion that differs from 0.84 is 

evidence in favor of the alternative. Statistically significant differences are at least as extreme as the 

difference we see in the data. We want to determine the probability that the difference in either 

direction (above or below 0.84) is at least as large as the difference seen in the data, so we include 

sample proportions at or above 0.86 and sample proportions at or below 0.82. For this reason, we 

look at the area in both tails. Our simulation shows one tail, so we have to double this area. 

The area above the test statistic of 1.22 is about 0.11. We double this area to include the area in the 

left tail, below Z = −1.22. This gives us a P-value of approximately 0.22. 

Our sample proportion was 0.02 above the population proportion from the null hypothesis. In a 

sample of size 500, we would observe a sample proportion 0.02 or more away from 0.84 about 

22% of the time by chance alone. 

Step 4: State a conclusion. 

Again we compare the P-value to the level of significance, α = 0.05. In this case, the P-value of 0.22 

is greater than 0.05, which means we do not have enough evidence to reject the null hypothesis. A 

sample result that could occur 22% of the time by chance alone is not statistically significant. Now 

we can state the conclusion in terms of the alternative hypothesis. 
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The data from this study does not provide evidence that is strong enough to conclude that the 

proportion of all children ages 8 to 18 who have Internet access at home has changed since 2009 

(P-value = 0.22). The 2% change observed in the data is not statistically significant. These results 

can be explained by predictable variation in random samples. 

Note about the Conclusion 

In the conclusion above, we did not have enough evidence to reject the null hypothesis. As we noted in 
“Hypothesis Testing,” failing to reject the null hypothesis does not mean the null hypothesis is true. 

In the case of the previous example, it is possible that the proportion of children who have Internet access 
at home has changed. But the data we gathered did not provide the evidence to detect that the proportion had 
changed significantly. 

Researchers often note improvements that could be made in their research and suggest follow-up research 
that might be done. In our example, a second sample with a larger sample size might provide the evidence 
needed to reject the null hypothesis. 

The important thing to keep in mind is that at the end of a hypothesis test, we never say that the null 
hypothesis is true. 

An interactive H5P element has been excluded from this version of the text. You can view it 

online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=445#h5p-440 

Try It 

California College Students Who Drink 

According to the Centers for Disease Control and Prevention, 60% of all American adults ages 18 to 

24 currently drink alcohol. Is the proportion of California college students who currently drink 
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alcohol different from the proportion nationwide? A survey of 450 California college students 

indicates that 66% currently drink alcohol. The hypotheses were: 

H0: p = 0.60 

Ha: p ≠ 0.60 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=445#h5p-441 

Click here to open the simulation 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=445#h5p-442 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=445#h5p-443 

Try It 

Coin Flips 

Recall the scenario from the previous page. A psychic claims to be able to predict the outcome of 

coin flips before they happen. Someone who guesses randomly will predict about half of coin flips 
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correctly. In 100 flips, the psychic correctly predicts 57 flips. Do the results of this test indicate that 

the psychic does better than random guessing? The hypotheses are 

H0: p = 0.50 

Ha: p > 0.50 

where p is the proportion of correct coin flip predictions by the psychic. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=445#h5p-444 

Click here to open the simulation 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=445#h5p-445 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=445#h5p-446 

Try It 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=445#h5p-447 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=445#h5p-448 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=445#h5p-449 
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HYPOTHESIS TEST FOR A POPULATION 
PROPORTION (3 OF 3) 

Learning outcomes 

• Conduct a hypothesis test for a population proportion. State a conclusion in context. 

• Interpret the P-value as a conditional probability in the context of a hypothesis test about a 

population proportion. 

• Distinguish statistical significance from practical importance. 

• From a description of a study, evaluate whether the conclusion of a hypothesis test is 

reasonable. 

More about the P-Value 

The P-value is a probability that describes the likelihood of the data if the null hypothesis is true. More 
specifically, the P-value is the probability that sample results are as extreme as or more extreme than the data if 
the null hypothesis is true. The phrase “as extreme as or more extreme than” means farther from the center of 
the sampling distribution in the direction of the alternative hypothesis. 

More generally, we view the P-value a description of the strength of the evidence against the null hypothesis 
and in support of the alternative hypothesis. But the P-value is a probability about sample results, not about 
the null or alternative hypothesis. 

One More Note about P-Values and the Significance Level 

You may wonder why 5% is often selected as the significance level in hypothesis testing and why 1% is also 
a commonly used level. It is largely due to just convenience and tradition. When Ronald Fisher (one of the 
founders of modern statistics) published one of his tables, he used a mathematically convenient scale that 
included 5% and 1%. Later, these same 5% and 1% levels were used by other people, in part just because Fisher 
was so highly esteemed. But mostly, these are arbitrary levels. 

The idea of selecting some sort of relatively small cutoff was historically important in the development 
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of statistics. But it’s important to remember that there is really a continuous range of increasing confidence 
toward the alternative hypothesis, not a single all-or-nothing value. There isn’t much meaningful difference, for 
instance, between the P-values 0.049 and 0.051, and it would be foolish to declare one case definitely a “real” 
effect and the other case definitely a “random” effect. In either case, the study results are roughly 5% likely by 
chance if there’s no actual effect. 

Whether such a P-value is sufficient for us to reject a particular null hypothesis ultimately depends on the 
risk of making the wrong decision and the extent to which the hypothesized effect might contradict our prior 
experience or previous studies. 

Example 

Sample Size and Hypothesis Testing 

Consider our earlier example about teenagers and Internet access. According to the Kaiser Family 

Foundation, 84% of U.S. children ages 8 to 18 had Internet access at home as of August 2009. 

Researchers wonder if this number has changed since then. The hypotheses we tested were: 

H0: p = 0.84 

Ha: p ≠ 0.84 

The original sample consisted of 500 children, and 86% of them had Internet access at home. The 

P-value was about 0.22, which was not strong enough to reject the null hypothesis. There was not 

enough evidence to show that the proportion of all U.S. children ages 8 to 18 have Internet access 

at home. 

Suppose we sampled 2,000 children and the sample proportion was still 86%. Our test statistic 

would be Z ≈ 2.44, and our P-value would be about 0.015. The larger sample size would allow us to 

reject the null hypothesis even though the sample proportion was the same. 

  |  734



Why does this happen? Larger samples vary less, so a sample proportion of 0.86 is more unusual 

with larger samples than with smaller samples if the population proportion is really 0.84. This 

means that if the alternative hypothesis is true, a larger sample size will make it more likely that we 

reject the null. Therefore, we generally prefer a larger sample as we have seen previously. 

An interactive H5P element has been excluded from this version 

of the text. You can view it online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=447#h5p-450 

Drawing Conclusions from Hypothesis Tests 

It is tempting to get involved in the details of a hypothesis test without thinking about how the data was 
collected. Whether we are calculating a confidence interval or performing a hypothesis test, the results are 
meaningless without a properly designed study. Consider the following exercises about how data collection can 
affect the results of a study. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=447#h5p-451 

Let’s Summarize 

In this section, we looked at the four steps of a hypothesis test as they relate to a claim about a population 
proportion. 

Step 1: Determine the hypotheses. 

• The hypotheses are claims about the population proportion, p. 
• The null hypothesis is a hypothesis that the proportion equals a specific value, p0. 
• The alternative hypothesis is the competing claim that the parameter is less than, greater than, or not 

equal to p0. 

Step 2: Collect the data. 
Since the hypothesis test is based on probability, random selection or assignment is essential in data 

production. Additionally, we need to check whether the sample proportion can be np ≥ 10 and n(1 − p) ≥ 10. 
Step 3: Assess the evidence. 

• Determine the test statistic which is the z-score for the sample proportion. The formula is: 

• Use the test statistic, together with the alternative hypothesis to determine the P-value. You can use a 
standard normal table (or Z-table) or technology (such as the simulations on the second page of this 
topic) to find the P-value. 
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• If the alternative hypothesis is greater than, the P-value is the area to the right of the test statistic. If the 
alternative hypothesis is less than, the P-value is the area to the left of the test statistic. If the alternative 
hypothesis is not equal to, the P-value is equal to double the tail area beyond the test statistic. 

Step 4: Give the conclusion. 

• A small P-value says the data is unlikely to occur if the null is true. If the P-value is less than or equal to 
the significance level, we reject the null hypothesis and accept the alternative hypothesis instead. 

• If the P-value is greater than the significance level, we say we “fail to reject” the null hypothesis. We never 
say that we “accept” the null hypothesis. We just say that we don’t have enough evidence to reject it. This 
is equivalent to saying we don’t have enough evidence to support the alternative hypothesis. 

• We write the conclusion in the context of the research question. Our conclusion is usually a statement 
about the alternative hypothesis (we accept Ha or fail to accept Ha) and should include the P-value. 

Other Hypothesis Testing Notes 

Remember that the P-value is the probability of seeing a sample proportion as extreme as the one observed 
from the data if the null hypothesis is true. The probability is about the random sample, not about the null or 
alternative hypothesis. 

A larger sample size makes it more likely that we will reject the null hypothesis if the alternative is true. 
Another way of thinking about this is that increasing the sample size will decrease the likelihood of a type II 
error. Recall that a type II error is failing to reject the null hypothesis when the alternative is true. 

Increasing the sample size can have the unintended effect of making the test sensitive to differences so small 
they don’t matter. A statistically significant difference is one large enough that it is unlikely to be due to 
sampling variability alone. Even a difference so small that it is not important can be statistically significant if 
the sample size is big enough. 

Finally, remember the phrase “garbage in, garbage out.” If the data collection methods are poor, then the 
results of a hypothesis test are meaningless. No statistical methods can create useful information if our data 
comes from convenience or voluntary response samples. Additionally, the results of a hypothesis test apply only 
to the population from whom the sample was chosen. 
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PUTTING IT TOGETHER: INFERENCE FOR 
ONE PROPORTION 

Let’s Summarize 

In Inference for One Proportion, we learned two inference procedures to draw conclusions about a population 
proportion: 

• A confidence interval when our goal is to estimate a population proportion. 
• A hypothesis test when our goal is to test a claim about a population proportion. 

Confidence Interval for Estimating a Population Proportion 

• A confidence interval estimates the population proportion with a range of possible values. The interval 
is based on a sample proportion and a margin of error. 

• Every confidence interval has a confidence level associated with it. The confidence level is a probability 
statement. It tells us the chance that a confidence interval, with a specific margin of error, contains the 
population proportion. But we can never determine if a specific interval does or does not contain the 
population proportion. We also cannot determine the probability that the population proportion lies in 
a specific interval. We can only say that in the long run the confidence level describes the percentage of 
the confidence intervals that will estimate the population proportion within a specific margin of error. 

• We can calculate a confidence interval for a population proportion when we can use a normal 
distribution to model the long-run behavior of sample proportions. We can use a normal distribution 
model when there are at least 10 observed successes and 10 observed failures. 

• We calculate the confidence interval for a population proportion using this formula: 
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where Zc depends on the confidence level. The part of the formula after the ± is the margin of error. The 
most common confidence levels are 90%, 95%, and 99%. The critical z-scores are 1.65, 1.96, and 2.576. 

• The margin of error comes from the standard error in the sampling distribution. Sample proportions 
from larger sample sizes have less variability, so the standard error is smaller. Therefore, confidence 
intervals based on larger sample sizes will have a smaller margin of error. This fits our intuition that 
larger samples will give more accurate estimates of the population proportion. 

• A higher level of confidence makes us more confident that the interval contains the population 
proportion because the interval is wider. This also means that the margin of error is larger. 

Hypothesis Tests in General: 

Hypothesis tests consist of four steps, which apply to all the hypothesis tests we will do in this course. 
Step 1: Determine the hypotheses. 
The hypotheses are statements about the parameter(s) in question. The null hypothesis, H0, is always a 

statement of equality and usually means no change or difference. The alternative hypothesis, Ha, is always an 
inequality, either <, >, or ≠, and is based on the research question. 

Step 2: Collect the data. 
The data must come from a random sample that is representative of the population in question. 
Step 3: Assess the evidence. 
The P-value is the evidence. The P-value is the probability that we would get sample results at least as 

extreme as those observed if the null hypothesis is true. If the P-value is smaller than the significance level, the 
results are unusual enough for us to reject the null hypothesis. Otherwise, we “fail to reject” the null hypothesis. 

Step 4: Give the conclusion. 
Our conclusion is stated in terms of the alternative hypothesis. Either there is or there is not enough evidence 

to say that the alternative hypothesis is true. We always use the context of the problem in the conclusion and 
always include the P-value. Finally, we never say that the null hypothesis is true, only that we reject or fail to 
reject it. 

Hypothesis Test for a Population Proportion: 

For the four steps, the following are specific to hypothesis testing for a population proportion. 
Step 1: Determine the hypotheses. 
The hypotheses for a test about a population proportion are stated in terms of the p. Here p0 is a number to 

which we compare the population proportion. 
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H0: p = p0 

Ha: p < p0 or p > p0 or p ≠ p0 

Step 2: Collect the data. 
We also check at this point that np ≥ 10 and n(1 − p) ≥ 10, where p is the value from the null hypothesis, p0. 

If these conditions are true, a normal model is a good fit for the sampling distribution of sample proportions. 
We need this model to do the remaining steps in the hypothesis test. 

Step 3: Assess the evidence. 
We calculate the test statistic (the z-score) for our sample proportion. We use the test statistic to determine 

the P-value, using a standard normal curve. We can do this using a Z-table or technology. We used simulations 
or statistical software in our work. As always, if the P-value is smaller than the significance level, the results are 
unusual enough for us to reject the null hypothesis. Otherwise, we “fail to reject” the null hypothesis. 

Step 4: Give the conclusion. 
See the information about stating conclusions for the general hypothesis test. There is nothing to add to this 

when we test a hypothesis about a population proportion. 
Other important notes: 

• In a hypothesis test, we make a decision based on probability, so there is uncertainty. A type I error 
occurs when we reject the null hypothesis even though it is true. A type II error occurs when we fail to 
reject the null hypothesis even though the alternative hypothesis is true. These errors are due to chance: 
the data from a random sample has led us to a wrong conclusion without our knowledge, which can 
happen even if we do all the steps correctly. 

• A difference may be statistically significant but not practically important for decision making. 
Examining the hypotheses and the sample results can help us realize when this happens. 

• For both confidence intervals and hypothesis tests about a population proportion, we must make sure 
that our sample is representative of the population. Using bad data to calculate a confidence interval or 
conduct a hypothesis test will give us worthless results. 
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WHY IT MATTERS: INFERENCE FOR TWO 
PROPORTIONS 

Learning outcomes 

• Recognize when to use a hypothesis test or a confidence interval to compare two population 

proportions or to investigate a treatment effect for a categorical variable. 

• Determine if a study involving two proportions is an experiment or an observational study. 

Why learn to make inferences about two populations? 

In previous modules, we learned to make inferences about a population proportion. In particular, we learned 
the following: 

• Random samples vary. When we use a sample proportion to make an inference about a population 
proportion, there is uncertainty. For this reason, inference involves probability. 

• Under certain conditions, we can model the variability in sample proportions with a normal curve. We 
use the normal curve to make probability-based decisions about population values. 

• We can estimate a population proportion with a confidence interval. The confidence interval is an actual 
sample proportion with a margin of error. We state our confidence in the accuracy of these intervals 
using probability. 

• We can test a hypothesis about a population proportion using an actual sample proportion. Again, we 
base our conclusion on probability using a P-value. The P-value describes the strength of our evidence in 
rejecting a hypothesis about the population. 

In Inference for Two Proportions, we continue to work with categorical data, so we continue to use 
proportions. But now we make inferences that compare two populations (or two treatments). 

As an overview, consider again the Big Picture of Statistics. 
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Here we discuss the four steps in a statistical investigation for situations from Module 9. 

1. Produce Data:Determine what to measure, then collect the data. In this module, we collect categorical 
data from two samples. In an observational study, we begin with two populations and randomly select a 
sample from each population. In an experiment, we randomly assign individuals to two treatments. The 
use of random selection or random assignment allows us to view the samples as independent. This 
means we assume that the variable values from one sample do not influence the values for the other 
sample. 

2. Exploratory Data Analysis: Analyze and summarize the data. We are working with categorical data, 
so from each sample, we compute a sample proportion. To compare the two samples, we subtract the 
proportions. When we conduct inference in the next step, our goal is to determine if the actual 
difference in the sample proportions is significantly different from what we expect in random sampling. 

3. Draw a Conclusion: Use data, probability, and statistical inference to draw a conclusion about the 
populations. Our approach to inference repeats the reasoning we did in Inference for One Proportion. 

◦ We use simulation to observe the behavior of the differences in sample proportions when we 
randomly select many, many samples. We create the simulation to reflect a claim about the 
populations. Then we develop a probability model to describe the shape, center, and spread of the 
sampling distribution. Of course, we are interested in the conditions that allow us to use a normal 
curve. 
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◦ We use this model to determine when a given difference is unusual in a formal hypothesis test. 
◦ We also construct confidence intervals to estimate the difference between two population

proportions. As before, we make a probability statement about our confidence in the accuracy of 
these intervals. 

Example 

The Abecedarian Early Intervention Project 

In the 1970s, Abecedarian Early Intervention Project studied the long-term effects of early 

childhood education for poor children. 

Research question: 

Does early childhood education increase the likelihood of college attendance for poor children? 

1. Produce Data: Determine what to measure, then collect the data. In this experiment, 

researchers selected 111 high-risk infants on the basis of the mothers’ education, family 

income, and other factors. They randomly assigned 57 infants to receive 5 years of high-

quality preschool. The remaining 54 infants were a control group. All children received 

nutritional supplements, social services, and health care to control the effects of these 

confounding factors on the outcomes of the experiment. 

2. Exploratory Data Analysis: Analyze and summarize the data. By the age of 21 a much 

higher percentage of the treatment group enrolled in college, 42% vs. 20%. 

3. Draw a Conclusion: Use data, probability, and statistical inference to draw a conclusion 

about the populations. Is this difference statistically significant? In other words, is this 

difference due to the pre-school experience or due to chance? We will test the claim that a 

larger proportion of children who attend pre-school will attend college. 

The following figure summarizes this investigation in the Big Picture. 
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Try It 

Health Care for Non-Union and Union Workers 

In a recent study the AFL/CIO selected random samples of non-union and union employees. They 

747  |  



compared the proportion of workers in each sample who had health insurance. They found that the 

proportion of non-union workers with health insurance was significantly lower than the proportion 

of union workers with health insurance. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=452#h5p-357 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=452#h5p-358 
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INTRODUCTION TO DISTRIBUTION OF 
DIFFERENCES IN SAMPLE PROPORTIONS 

What you’ll learn to do: Recognize when to use a two 
population proportion hypothesis test to compare two 
populations/treatment groups. 

In this section we will recognize when to use a hypothesis test or a confidence interval to compare two 
populations or to investigate a treatment effect for a categorical variable. It is important to determine if a 
study involving two proportions is an experiment or an observational study. We will also learn to describe the 
sampling distribution of the difference between proportions as well as draw conclusions about a difference in 
population proportions from a simulation. 
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DISTRIBUTION OF DIFFERENCES IN 
SAMPLE PROPORTIONS (1 OF 5) 

Learning outcomes 

• Describe the sampling distribution of the difference between two proportions. 

• Draw conclusions about a difference in population proportions from a simulation. 

Our goal in this module is to use proportions to compare categorical data from two populations or two 
treatments. 

It’s not about the values – it’s about how they are related! 
In Inference for One Proportion, we learned to estimate and test hypotheses regarding the value of a single 

population proportion. Here, in Inference for Two Proportions, the value of the population proportions is not 
the focus of inference. Instead, we want to develop tools comparing two unknown population proportions. 

The first step is to examine how random samples from the populations compare. In this investigation, we 
assume we know the population proportions in order to develop a model for the sampling distribution. This is 
the same thinking we did in Linking Probability to Statistical Inference. In that module, we assumed we knew 
a population proportion. Then we selected random samples from that population. We examined how sample 
proportions behaved in long-run random sampling. This is the same approach we take here. 

Example 

Teen Depression 

Most of us get depressed from time to time. Depression is a normal part of life. Many people get 

over those feelings rather quickly. But some people carry the burden for weeks, months, or even 

years. For these people, feelings of depression can have a major impact on their lives. Depression 
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can cause someone to perform poorly in school or work and can destroy relationships between 

relatives and friends. 

Research suggests that teenagers in the United States are particularly vulnerable to depression. 

And, among teenagers, there appear to be differences between females and males. The 

Christchurch Health and Development Study (FERGUSSON, D. M., AND L. J. HORWOOD, “THE 

CHRISTCHURCH HEALTH AND DEVELOPMENT STUDY: REVIEW OF FINDINGS ON CHILD AND ADOLESCENT 

MENTAL HEALTH,” AUSTRALIAN AND NEW ZEALAND JOURNAL OF PSYCHIATRY 35[3]:287–296), which 

began in 1977, suggests that the proportion of depressed females between ages 13 and 18 years is 

as high as 26%, compared to only 10% for males in the same age group. 

Let’s assume that 26% of all female teens and 10% of all male teens in the United States are 

clinically depressed. In other words, assume that these values are both population proportions. 

pf = 0.26 for the population of all female teenagers in the United States 

pm = 0.1 for the population of all male teenagers in the United States 

Graphically, we can compare these proportion using side-by-side ribbon charts: 

To compare these proportions, we could describe how many times larger one proportion is than the 

other. Here the female proportion is 2.6 times the size of the male proportion (0.26/0.10 = 2.6). An 

easier way to compare the proportions is to simply subtract them. This is the approach statisticians 

use. The difference between the female and male proportions is 0.16. This is a 16-percentage point 

difference. We write this with symbols as follows: 

 = 0.26 − 0.10 = 0.16 

Another study, the National Survey of Adolescents (KILPATRICK, D., K. RUGGIERO, R. ACIERNO, B. 

SAUNDERS, H. RESNICK, AND C. BEST, “VIOLENCE AND RISK OF PTSD, MAJOR DEPRESSION, SUBSTANCE 
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ABUSE/DEPENDENCE, AND COMORBIDITY: RESULTS FROM THE NATIONAL SURVEY OF ADOLESCENTS,” 

JOURNAL OF CONSULTING AND CLINICAL PSYCHOLOGY 71[4]:692–700) found a 6% higher rate of 

depression in female teens than in male teens. Suppose that this result comes from a random 

sample of 64 female teens and 100 male teens. Let’s assume that 9 of the females are clinically 

depressed compared to 8 of the males. The proportion of females who are depressed, then, is 9/64 

= 0.14. The proportion of males who are depressed is 8/100 = 0.08. The difference between the 

female and male sample proportions is 0.06, as reported by Kilpatrick and colleagues. We write this 

with symbols as follows: 

 = 0.14 − 0.08 = 0.06 

Of course, we expect variability in the difference between depression rates for female and male 

teens in different studies. But does the National Survey of Adolescents suggest that our 

assumption about a 0.16 difference in the populations is wrong? Or could the survey results have 

come from populations with a 0.16 difference in depression rates? Does sample size impact our 

conclusion? 

An interactive H5P element has been excluded from this version of the text. You can view it 

online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=457#h5p-478 

Try It 

We will use a simulation to investigate these questions. The simulation will randomly select a 

sample of 64 female teens from a population in which 26% are depressed and a sample of 100 male 

teens from a population in which 10% are depressed. (In the real National Survey of Adolescents, 

the samples were very large. Later we investigate whether larger samples will change our 

conclusion.) 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=457#h5p-360 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=457#h5p-361 

A simulation is needed for this activity. Click here to open this simulation in its own window. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=457#h5p-362 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=457 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=457#h5p-363 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=457#h5p-364 

This diagram illustrates our process here. Notice that we are sampling from populations with assumed 
parameter values, but we are investigating the difference in population proportions. From the simulation, we 
can judge only the likelihood that the actual difference of 0.06 comes from populations that differ by 0.16. We 
cannot make judgments about whether the female and male depression rates are 0.26 and 0.10 respectively. We 
can make a judgment only about whether the depression rate for female teens is 0.16 higher than the rate for 
male teens. This is what we meant by “It’s not about the values – it’s about how they are related!” 
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DISTRIBUTION OF DIFFERENCES IN 
SAMPLE PROPORTIONS (2 OF 5) 

Learning outcomes 

• Draw conclusions about a difference in population proportions from a simulation. 

Introduction 

Recall that we are in the middle of an investigation about the difference in female and male teen depression 
rates. In our investigation, we are assuming that 26% of female teens and 10% of male teens are depressed. That 
is, we assume a 16% = 0.16 difference favoring girls. 

• We saw a 0.06 gender difference in teen depression rates from the National Survey of Adolescents. Again, 
girls had a higher rate of depression. Does this study suggest that our assumption about a 0.16 difference in 
the populations is wrong? 

• Or could the results have come from populations with a 0.16 difference in depression rates? 

At this point, we may have a sense of the answers to these questions for samples of 64 females and 100 
males. But we need to look at the long-run behavior of the differences in sample proportions. We also need to 
investigate the effect of sample size on our conclusion. The samples in the National Survey of Adolescents are 
very large. 

So we continue this investigation in a Simulation WalkThrough. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=460#oembed-1 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=460#h5p-365 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=460#h5p-366 

On the next page, we use the simulation shown in the WalkThrough to make inferences about a difference in 
population proportions. As we did in Linking Probability to Statistical Inference, we use a simulation to make 
observations about the sampling distribution before we develop the mathematical model that we will use in 
inference. The logic we use to make inferences with simulated sampling distributions is the same logic we use 
with mathematical models. Let’s practice that way of thinking now. 

Try It 

Suppose in a study of 540 female and 475 male U.S. teens, we find that 8% of the females and 2% 

of the males are depressed. What does this study suggest about our assumption that the 

depression rate of female teens is 16% higher than that of male teens in the United States? 

Here is a simulated distribution of differences for a large number of independent random samples 

for these sample sizes. Note that we have rescaled the axis, so the distribution may look wider than 

the distributions in the WalkThrough, but it actually has less variability. 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=460#h5p-367 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=460#h5p-368 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=460#h5p-369 
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DISTRIBUTION OF DIFFERENCES IN 
SAMPLE PROPORTIONS (3 OF 5) 

Learning outcomes 

• Draw conclusions about a difference in population proportions from a simulation. 

Now we continue with more examples of using a simulation to make inferences about differences in 
population proportions. 

Example 

Abecedarian Early Intervention Project 

Recall the Abecedarian Early Intervention Project. In this experiment, researchers selected high-risk 

infants on the basis of the mothers’ education, family income, and other factors. They randomly 

assigned some infants to receive 5 years of high-quality preschool. The remaining infants were a 

control group. All children received nutritional supplements, social services, and health care to 

control the effects of these confounding factors on the outcomes of the experiment. By age 21, a 

much larger percentage of the treatment group than the control group had enrolled in college. 

Assumption about parameters: 

For this example, we assume that 45% of infants with a treatment similar to the Abecedarian 

project will enroll in college compared to 20% in the control group. We assume that a high-quality 

preschool experience will produce a 25% increase in college enrollment. We call this the treatment 

effect. 

Let’s suppose that childcare institutions across the United States want to replicate the Abecedarian 

project. How much variation in results can we expect from fluctuation in random assignment to 
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treatment groups? We know from our previous work that our answer depends on the number of 

infants we assign to each group. 

Actual sample results: 

Let’s suppose a daycare center replicates the Abecedarian project with 70 infants in the treatment 

group and 100 in the control group. After 21 years, the daycare center finds a 15% increase in college 

enrollment for the treatment group. This is still an impressive difference, but it is 10% less than the 

effect they had hoped to see. What can the daycare center conclude about the assumption that the 

Abecedarian treatment produces a 25% increase? 

Here we use the simulation from the WalkThrough to do a simulation. 

Analysis: 

• We assume that the treatment effect is a 25% increase in college enrollment. So we see that 

the mean of the differences in sample proportions is 0.25. In other words, the differences in 

sample proportions average out to the difference between the population proportions. 

• Typical differences from random assignment appear to fall between about 0.10 and 0.40. This 

is 2 standard errors from the mean. 

• The daycare center achieved a 15% increase. This difference in sample proportions of 0.15 is 

less than 2 standard errors from the mean, so this result is not surprising if the treatment 

effect is really 25%. 
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Conclusion: 

Chance variation that comes from random assignment explains the results from this daycare center. 

The results are not statistically significant. We can view this study as weak evidence that the 

treatment effect is less than 25%. So this study does not give us evidence strong enough to reject 

the claim that the Abecedarian treatment produces a 25% treatment effect. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=462#h5p-370 

Example 

HPV Vaccine 

During a debate between Republican presidential candidates in 2011, Michele Bachmann criticized 

an executive order made by her opponent, Texas Governor Rick Perry. The executive order required 

that all sixth-grade girls receive an HPV vaccine. HPV (human papillomavirus) infections are 

widespread. Some forms of HPV cause cancer. In 2007, the New England Journal of Medicine 

published the results of two large, randomized, placebo-controlled trials of a vaccine for HPV-

related cancer. For the group of girls and women who received the vaccine, the HPV-related cancer 

rate was much lower than for those who received a placebo. 

After the debate, a Congressional Connection Poll asked 1,000 people the following question: “As 

you may have heard, a few years ago the state of Texas required girls entering sixth grade to 

receive vaccinations against a virus that can cause cervical cancer in women. These injections were 
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required for all girls unless their parent or legal guardian requested that they not receive them. Do 

you think Texas was right or wrong to require the vaccinations?” Fifty-seven percent of those 

polled answered that the state was wrong. 

Let’s suppose 55% of all U.S. adults oppose mandatory vaccination against HPV. Let’s also suppose 

there is no difference between men and women on this issue. So we assume that 55% of all U.S. 

men and 55% of all U.S. women oppose mandatory vaccination against HPV. 

Suppose we ask this same question to a random sample of 100 U.S. men and 150 U.S. women. How 

much of a difference in poll results will convince us that there are gender differences with this 

issue? 

Use the simulation to do a simulation to answer this question. Enter your answer in the Try It

activity that follows. 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=462 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=462#h5p-371 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=462#h5p-372 
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DISTRIBUTION OF DIFFERENCES IN 
SAMPLE PROPORTIONS (4 OF 5) 

Learning outcomes 

• Draw conclusions about a difference in population proportions from a simulation. 

The Sampling Distribution of Differences in Sample 
Proportions 

Let’s summarize what we have observed about the sampling distribution of the differences in sample 
proportions. We want to create a mathematical model of the sampling distribution, so we need to understand 
when we can use a normal curve. We also need to understand how the center and spread of the sampling 
distribution relates to the population proportions. 

Shape: 

In each situation we have encountered so far, the distribution of differences between sample proportions 
appears somewhat normal, but that is not always true. We discuss conditions for use of a normal model later. 

Center: 

Regardless of shape, the mean of the distribution of sample differences is the difference between the population 
proportions, p1 – p2. This is always true if we look at the long-run behavior of the differences in sample 
proportions. 

Spread: 

We have observed that larger samples have less variability. Advanced theory gives us this formula for the 
standard error in the distribution of differences between sample proportions: 

769  |  



 
Notice the following: 

• The terms under the square root are familiar. These terms are used to compute the standard errors for 
the individual sampling distributions of   and . 

• The sample size is in the denominator of each term. As we learned earlier this means that increases in 
sample size result in a smaller standard error. 

Comment 

Let’s look at the relationship between the sampling distribution of differences between sample proportions 
and the sampling distributions for the individual sample proportions we studied in Linking Probability to 
Statistical Inference. We compare these distributions in the following table. 

Notice the relationship between the means: 

• The mean of the differences is the difference of the means. This makes sense. The mean of each sampling 
distribution of individual proportions is the population proportion, so the mean of the sampling 
distribution of differences is the difference in population proportions. 

Notice the relationship between standard errors: 

• The standard error of differences relates to the standard errors of the sampling distributions for 
individual proportions. Look at the terms under the square roots. Since we add these terms, the standard 
error of differences is always larger than the standard error in the sampling distributions of individual 
proportions. In other words, there is more variability in the differences. 
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Variability and Variance 

In this module, we sample from two populations of categorical data, and compute sample 

proportions from each. 

We have seen that the means of the sampling distributions of sample proportions are p1 and p2

the standard errors are  and . 

Statisticians often refer to the square of a standard deviation or standard error as a variance. 

The variances of the sampling distributions of sample proportion are 

 and 

If we add these variances we get the variance of the differences between sample proportions. 

For the sampling distribution of all differences, , the mean, , of all 

differences is the difference of the means p1 – p2. The variance of all differences, , is 

the sum of the variances, . 

We will now do some problems similar to problems we did earlier. Only now, we do not use a simulation to 
make observations about the variability in the differences of sample proportions. Instead, we use the mean and 
standard error of the sampling distribution. But our reasoning is the same. 
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Example 

Controversy about HPV Vaccine 

During a debate between Republican presidential candidates in 2011, Michele Bachmann, one of the 

candidates, implied that the vaccine for HPV is unsafe for children and can cause mental 

retardation. Scientists and other healthcare professionals immediately produced evidence to refute 

this claim. A USA Today article, “No Evidence HPV Vaccines Are Dangerous” (September 19, 2011), 

described two studies by the Centers for Disease Control and Prevention (CDC) that track the 

safety of the vaccine. Here is an excerpt from the article: 

First, the CDC monitors reports to the Vaccine Adverse Event Reporting System, a database 

to which anyone can report a suspected side effect. CDC officials then investigate to see 

whether reported problems could possibly be caused by vaccines or are simply a coincidence. 

Second, the CDC has been following girls who receive the vaccine over time, comparing them 

with a control group of unvaccinated girls….Again, the HPV vaccine has been found to be 

safe. 

According to an article by Elizabeth Rosenthal, “Drug Makers’ Push Leads to Cancer Vaccines’ Rise” 

(New York Times, August 19, 2008), the FDA and CDC said that “with millions of vaccinations, by 

chance alone some serious adverse effects and deaths will occur in the time period following 

vaccination, but have nothing to do with the vaccine.” The article stated that the FDA and CDC 

monitor data to determine if more serious effects occur than would be expected from chance alone. 

According to another source, the CDC data suggests that serious health problems after vaccination 

occur at a rate of about 3 in 100,000. This is a proportion of 0.00003. But are these health 

problems due to the vaccine? Is the rate of similar health problems any different for those who 

don’t receive the vaccine? Let’s assume that there are no differences in the rate of serious health 

problems between the treatment and control groups. That is, let’s assume that the proportion of 

serious health problems in both groups is 0.00003. 

Suppose the CDC follows a random sample of 100,000 girls who had the vaccine and a random 

sample of 200,000 girls who did not have the vaccine. Over time, they calculate the proportion in 

each group who have serious health problems. 

Question: 

How much of a difference in these sample proportions is unusual if the vaccine has no effect on the 

occurrence of serious health problems? 
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To answer this question, we need to see how much variation we can expect in random samples if 

there is no difference in the rate that serious health problems occur, so we use the sampling 

distribution of differences in sample proportions. 

• Center: Mean of the differences in sample proportions is 

p1 – p2 = 0.00003 − 0.00003 = 0 

• Spread: The large samples will produce a standard error that is very small. The standard error 

of the differences in sample proportions is 

 ≈ 0.00002 

Answer: We can view random samples that vary more than 2 standard errors from the mean as 

unusual. If there is no difference in the rate that serious health problems occur, the mean is 0. So 

differences in rates larger than 0 + 2(0.00002) = 0.00004 are unusual. This is equivalent to about 4 

more cases of serious health problems in 100,000. With such large samples, we see that a small 

number of additional cases of serious health problems in the vaccine group will appear unusual. But 

are 4 cases in 100,000 of practical significance given the potential benefits of the vaccine? This is an 

important question for the CDC to address. 

Try It 

According to a 2008 study published by the AFL-CIO, 78% of union workers had jobs with 

employer health coverage compared to 51% of nonunion workers. In 2009, the Employee Benefit 

Research Institute cited data from large samples that suggested that 80% of union workers had 

health coverage compared to 56% of nonunion workers. Let’s suppose the 2009 data came from 

random samples of 3,000 union workers and 5,000 nonunion workers. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=464#h5p-373 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=464#h5p-374 

Try It 

The following is an excerpt from a press release on the AFL-CIO website published in October of 

2003. 

Wal-Mart exemplifies the harmful trend among America’s large employers to shirk health 

insurance responsibilities at the cost of their workers and community…. With reduced 

coverage and increased workers’ premium fees, Wal-Mart – the largest private employer in 

the U.S. – sets a troubling standard. Fewer than half of Wal-Mart workers are insured under 

the company plan – just 46 percent. This rate is dramatically lower than the 66 percent of 

workers at large private firms who are insured under their companies’ plans, according to a 

new Commonwealth Fund study released today which documents the growing trend among 

large employers to drop health insurance for their workers. 

Suppose we want to see if this difference reflects insurance coverage for workers in our 

community. We select a random sample of 50 Wal-Mart employees and 50 employees from other 

large private firms in our community. Suppose that 20 of the Wal-Mart employees and 35 of the 

other employees have insurance through their employer. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=464#h5p-375 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=464#h5p-376 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 

775  |  

https://pressbooks.cuny.edu/conceptsinstatistics/?p=464#h5p-376
http://oli.cmu.edu/
https://creativecommons.org/licenses/by/4.0


DISTRIBUTION OF DIFFERENCES IN 
SAMPLE PROPORTIONS (5 OF 5) 

DISTRIBUTION OF DIFFERENCES IN SAMPLE PROPORTIONS (5 OF 5)  |  776



DISTRIBUTION OF DIFFERENCES IN 
SAMPLE PROPORTIONS (5 OF 5) 

Learning outcomes 

• Estimate the probability of an event using a normal model of the sampling distribution. 

Why Do We Care about a Normal Model? 

Now we focus on the conditions for use of a normal model for the sampling distribution of differences in 
sample proportions. 

We use a normal model for inference because we want to make probability statements without running a 
simulation. If we are conducting a hypothesis test, we need a P-value. If we are estimating a parameter with 
a confidence interval, we want to state a level of confidence. These procedures require that conditions for 
normality are met. 

Note: If the normal model is not a good fit for the sampling distribution, we can still reason from the 
standard error to identify unusual values. We did this previously. For example, we said that it is unusual to 
see a difference of more than 4 cases of serious health problems in 100,000 if a vaccine does not affect how 
frequently these health problems occur. But without a normal model, we can’t say how unusual it is or state 
the probability of this difference occurring. 

When Is a Normal Model a Good Fit for the Sampling 
Distribution of Differences in Proportions? 

A normal model is a good fit for the sampling distribution of differences if a normal model is a good fit 
for both of the individual sampling distributions. More specifically, we use a normal model for the sampling 
distribution of differences in proportions if the following conditions are met. 

n1p1 ≥ 10 n1 (1-p1) ≥ 10 n2p2 ≥ 10 n2(1-p2) ≥ 10 
These conditions translate into the following statement: 
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The number of expected successes and failures in both samples must be at least 10. (Recall here that success 
doesn’t mean good and failure doesn’t mean bad. A success is just what we are counting.) 

Here we complete the table to compare the individual sampling distributions for sample proportions to the 
sampling distribution of differences in sample proportions. 

Example 

More on Conditions for Use of a Normal Model 

All of the conditions must be met before we use a normal model. If one or more conditions is not 

met, do not use a normal model. Here we illustrate how the shape of the individual sampling 

distributions is inherited by the sampling distribution of differences. 
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Try It 

Recall the AFL-CIO press release from a previous activity. “Fewer than half of Wal-Mart workers 
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are insured under the company plan – just 46 percent. This rate is dramatically lower than the 66 

percent of workers at large private firms who are insured under their companies’ plans, according 

to a new Commonwealth Fund study released today, which documents the growing trend among 

large employers to drop health insurance for their workers.” 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=469#h5p-377 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=469#h5p-378 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=469#h5p-379 

Using the Normal Model in Inference 

When conditions allow the use of a normal model, we use the normal distribution to determine P-values when 
testing claims and to construct confidence intervals for a difference between two population proportions. 

We can standardize the difference between sample proportions using a z-score. We calculate a z-score as we 
have done before. 
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For a difference in sample proportions, the z-score formula is shown below. 

Example 

Abecedarian Early Intervention Project 

Recall the Abecedarian Early Intervention Project. For this example, we assume that 45% of infants 

with a treatment similar to the Abecedarian project will enroll in college compared to 20% in the 

control group. That is, we assume that a high-quality prechool experience will produce a 25% 

increase in college enrollment. We call this the treatment effect. 

Let’s suppose a daycare center replicates the Abecedarian project with 70 infants in the treatment 

group and 100 in the control group. After 21 years, the daycare center finds a 15% increase in college 

enrollment for the treatment group. This is still an impressive difference, but it is 10% less than the 

effect they had hoped to see. 

What can the daycare center conclude about the assumption that the Abecedarian treatment 

produces a 25% increase? 

Previously, we answered this question using a simulation. 

781  |  



This difference in sample proportions of 0.15 is less than 2 standard errors from the mean. This 

result is not surprising if the treatment effect is really 25%. We cannot conclude that the 

Abecedarian treatment produces less than a 25% treatment effect. 

Now we ask a different question: What is the probability that a daycare center with these sample 

sizes sees less than a 15% treatment effect with the Abecedarian treatment? 

We use a normal model to estimate this probability. The simulation shows that a normal model is 

appropriate. We can verify it by checking the conditions. All expected counts of successes and 

failures are greater than 10. 

For the treatment group: 

70 (0.45) = 31.5 

70 (0.55) = 38.5 

For the control group: 

100 (0.20 ) = 20 

100 (0.80) = 80 

In the simulated sampling distribution, we can see that the difference in sample proportions is 

between 1 and 2 standard errors below the mean. So the z-score is between −1 and −2. When we 

calculate the z-score, we get approximately −1.39. 
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We use a simulation of the standard normal curve to find the probability. We get about 0.0823. 

Conclusion: If there is a 25% treatment effect with the Abecedarian treatment, then about 8% of 

the time we will see a treatment effect of less than 15%. This probability is based on random 

samples of 70 in the treatment group and 100 in the control group. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=469#h5p-380 
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Let’s Summarize 

In “Distributions of Differences in Sample Proportions,” we compared two population proportions by 
subtracting. When we select independent random samples from the two populations, the sampling 
distribution of the difference between two sample proportions has the following shape, center, and spread. 

Shape: 

A normal model is a good fit for the sampling distribution if the number of expected successes and failures in 
each sample are all at least 10. Written as formulas, the conditions are as follows. 

n1p1 ≥ 10 n1 (1-p1) ≥ 10 n2p2 ≥ 10 n2(1-p2) ≥ 10 

Center: 

Regardless of shape, the mean of the distribution of sample differences is the difference between the population 
proportions, . This is always true if we look at the long-run behavior of the differences in sample 
proportions. 

Spread: 

As we know, larger samples have less variability. The formula for the standard error is related to the formula 
for standard errors of the individual sampling distributions that we studied in Linking Probability to Statistical 
Inference. 

If a normal model is a good fit, we can calculate z-scores and find probabilities as we did in Modules 6, 7, and 
8. The formula for the z-score is similar to the formulas for z-scores we learned previously. 
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INTRODUCTION TO ESTIMATE THE 
DIFFERENCE BETWEEN POPULATION 
PROPORTIONS 

What you’ll learn to do: Construct and interpret confidence 
intervals to compare two population/treatment group 
proportions. 

In this section we will learn to construct a confidence 
interval to estimate the difference between two 
population proportions (or the size of a treat-ment effect) 
when conditions are met. We will then interpret the 
meaning of a confidence level associated with a confidence 
interval. This is important when we describe how the 
confidence level affects the margin of error. We will then 
evaluate whether conclusions are reasonable when given 
the description of a statistical study. 

 
CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 

787  |  

http://oli.cmu.edu/
https://creativecommons.org/licenses/by/4.0


ESTIMATE THE DIFFERENCE BETWEEN 
POPULATION PROPORTIONS (1 OF 3) 

ESTIMATE THE DIFFERENCE BETWEEN POPULATION PROPORTIONS (1 OF 3)  |  788



ESTIMATE THE DIFFERENCE BETWEEN 
POPULATION PROPORTIONS (1 OF 3) 

Learning outcomes 

• Recognize when to use a hypothesis test or a confidence interval to compare two population 

proportions or to investigate a treatment effect for a categorical variable. 

• Construct a confidence interval to estimate the difference between two population 

proportions (or the size of a treatment effect) when conditions are met. Interpret the 

confidence interval in context. 

In “Distributions of Differences in Sample Proportions,” we used simulation to observe the behavior of the 
differences in sample proportions when we randomly select many, many samples. From the simulation, we 
developed a normal probability model to describe the sampling distribution of sample differences. With this 
model, we are now ready to do inference about a difference in population proportions (or about a treatment 
effect.) 

When our goal is to estimate a difference between two population proportions (or the size of a treatment 
effect), we select two independent random samples and use the difference in sample proportions as an estimate. 
Of course, random samples vary, so we want to include a statement about the amount of error that may be 
present. Because the differences in sample proportions vary in a predictable way, we can also make a probability 
statement about how confident we are in the process that we used to estimate the difference between the 
population proportions. You may recognize that what we are describing is a confidence interval. 

In Inference for One Proportion, we calculated confidence intervals to estimate a single population 
proportion. In this section, “Estimate the Difference between Population Proportions,” we learn to calculate a 
confidence interval to estimate the difference between two population proportions. If the data comes from an 
experiment, we estimate the size of the treatment effect. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=474#h5p-381 

Confidence Interval for a Difference in Two Population 
Proportions: the Basics 

Every confidence interval has this form: 
statistic ± marginoferror 

To estimate a difference in population proportions (or a treatment effect), the statistic is a difference in 
sample proportions, so the confidence interval is 

(differenceinsampleproportions) ± marginoferror 
When we select two random samples and calculate the difference in the sample proportions, we do not know 

the exact amount of error for this particular pair of samples. We therefore use the standard error as a typical 
amount of error and calculate the margin of error from the standard error, as we did in Inference for One 
Proportion. 

If a normal model is a good fit for the sampling distribution, we can use it to make probability statements 
that describe our confidence in the interval. More specifically, we use the normal model to describe our 
confidence that the difference in population proportions lies within a given margin of error of the difference 
in sample proportions. For example, we can state that we are 95% confident that the difference in population 
proportions is contained in the following interval: 

(differenceinsampleproportions) ± 2 (standarderror) 
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Try It 

Nuclear Power 

The following problem is based on a report, “Opposition to Nuclear Power Rises amid Japanese 

Crisis,” by the Pew Research Center (March 21, 2011). 

After the nuclear reactor accidents in Japan during the spring of 2011, there was a shift in public 

support for expanded use of nuclear power in the United States. A few months before the accident, 

47% of a random sample of 1,004 U.S. adults supported expanded use of nuclear power. After the 

nuclear accident in Japan, 39% of a different random sample of 1,004 U.S. adults favored expanded 

use. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=474#h5p-382 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=474#h5p-383 

What Does 95% Confident Really Mean? 

95% confident comes from a normal model of the sampling distribution. 
To review this idea in the context of differences in sample proportions, let’s start with a picture to help us 

visualize a confidence interval and its relationship to the sampling distribution. The following normal model 
represents the sampling distribution. 
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In the diagram, notice the sample difference. In the sampling distribution, we can see that the error in this 
sample difference is less than the margin of error. We know this because the distance between the sample 
difference and the population difference is shorter than the length of the margin of error (abbreviated MOE 
in the figure). When we create a confidence interval with this sample difference, we mark a distance equal to 
a margin of error on either side of the sample difference. Notice that this interval contains the population 
difference, which makes sense because the distance between the population difference and the sample 
difference has not changed. 

So where does the “95%” come from? If the normal model is a good fit for the sampling distribution, then 
the empirical rule applies. The empirical rule says that 95% of the values in a normal distribution fall within 
2 standard deviations of the mean. So 95% of the sample differences are within 2 standard errors of the mean 
difference. Remember that the mean difference is the difference in population proportions. Now consider 
the confidence interval centered at a sample difference. From the empirical rule, it follows that 95% of the 
confidence intervals, with a margin of error equal to 2 standard errors, will contain the population difference. 

Following is another illustration of 95% confidence, a concept that is often misinterpreted. This diagram 
helps us remember the correct interpretation. If we construct confidence intervals with a margin of error equal 
to 2 standard errors, then 95% confidence means that in the long run, 95% of these confidence intervals will 
contain the population difference, and 5% of the time, the interval we calculate will not contain it. We show 
one of these less common intervals with a red dot at the sample difference. 
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Of course, in reality, we don’t know the difference in population proportions. (This is the why we want to 
estimate it with a confidence interval!) So, in reality, we will not be able to determine if a specific confidence 
interval does or does not contain the true difference in population proportions. This is why we state a level of 
confidence. For a specific interval, we say we are 95% confident that the interval contains the true difference in 
population proportions. 

Example 

Correct and Incorrect Interpretations of 95% Confidence 

Recall our earlier example about the change in public opinion after the nuclear accident in Japan. We 

concluded, “We are 95% confident that there was a 4% to 12% drop in support for the expanded 

use of nuclear power in the United States after the nuclear accident in Japan.” 

Here are some accurate ways to describe the phrase “95% confident” for this confidence interval: 

• There is a 95% chance that poll results from two random samples will give a confidence 

interval that contains the true change in public support for the expanded use of nuclear 

power in the United States after the nuclear accident in Japan 
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• 95% of the time, this method produces an interval that covers the true difference in the 

proportions of the U.S. adult population supporting expanded use of nuclear power in the 

United States before and after the nuclear accident in Japan. 

Here are some incorrect interpretations: 

• There is a 95% chance that the true difference in public opinion (before and after the nuclear 

accident in Japan) is between 4% and 12%. 

• There is a 95% chance that there was a 4% to 12% drop in support for the expanded use of 

nuclear power in the United States after the nuclear accident in Japan. 

What do you notice? In the correct interpretations, the 95% is a probability statement about the 

random event of sampling. So statements like “95% chance that two random samples give a 

confidence interval” and “95% of the time, this method produces an interval” describe the chance 

that confidence intervals, in the long run, contain the difference in population proportions. 

In the wrong interpretations, the phrase “95% chance” is a probability statement about the specific 

interval 4% to 12%. Since we already found the confidence interval, there is no random event in this 

description, so we cannot make a probability statement about a single specific interval. For this 

reason, we use the phrase “95% confident” when we are describing a single interval from a specific 

study. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=474#h5p-384 
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ESTIMATE THE DIFFERENCE BETWEEN 
POPULATION PROPORTIONS (2 OF 3) 

Learning outcomes 

• Construct a confidence interval to estimate the difference between two population 

proportions (or the size of a treatment effect) when conditions are met. Interpret the 

confidence interval in context. 

• Interpret the meaning of a confidence level associated with a confidence interval and 

describe how the confidence level affects the margin of error. 

• Given the description of a statistical study, evaluate whether conclusions are reasonable. 

Confidence Interval for a Difference in Two Population 
Proportions: Beyond the Basics 

For all confidence intervals, the margin of error is based on the standard error. We know from “Distributions 
of Differences in Sample Proportions” that the standard error for the sampling distribution of differences in 
sample proportions is: 

Obviously, if we are trying to estimate the difference in population proportions, we will not know  or 
. So we estimate these population proportions with our sample proportions. This is the same approach we 

used when had to estimate the standard error for the distribution of sample proportions in Inference for One 
Proportion. The estimated standard error becomes 

This formula estimates the average error between a difference in sample proportions and the true difference 
in population proportions. 

So a 95% confidence interval has the following formula: 
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(differenceinsampleproportions) ± 2(standarderror) 

We can use this formula only if a normal model is a good fit for the sampling distribution. Recall that this 
is true only if the expected number of successes and failures in each sample is at least 10. For those who like 
formulas, these conditions translate into the following inequalities. 

n1p1 ≥ 10 n1 (1-p1) ≥ 10 n2p2 ≥ 10 n2(1-p2) ≥ 10 
We have to adjust these conditions because we do not know the population proportions p1 and p2. We make 

the same adjustment we made in Inference for One Proportion. We require that the actual number of successes 
and failures in each sample is at least 10. For those who like formulas, these conditions translate into replacing 
p1 and p2 with the corresponding sample proportions. Luckily, this tweak works and the normal distribution 
still gives fairly accurate confidence levels for different critical z-scores. 

An interactive H5P element has been excluded from this version of the text. You can view it 

online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=477#h5p-479 

 

Try It 

Nicotine Replacement Therapy 

The Centre for Addiction and Mental Health in Canada posted the following description of a clinical 

trial on clinicaltrials.gov in September 2011. 

This study will examine the efficacy of mailed distribution of free Nicotine Replacement 

Therapy to smokers. Telephone numbers will be randomly selected from across Canada in 

order to recruit adult smokers interested in completing a smoking survey and willing to be 

interviewed again in 8 weeks and 6 months times. Study participants will be asked about 

their smoking history and a hypothetical question: would they be interested in receiving the 

nicotine patch if this were to be provided to them free of charge? Participants expressing 
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interest will be randomly assigned to one of two groups. One group will be offered the 

opportunity to actually receive a program of 5 weeks of nicotine patch for free right away 

and the other group will not be offered the free nicotine patches. The proportions of smokers 

in the two groups who quit smoking by the 6-month interview will be compared. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=477#h5p-385 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=477#h5p-386 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=477#h5p-387 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=477#h5p-388 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=477#h5p-389 

Other Levels of Confidence 

In Inference for One Proportion, we saw that we can create confidence intervals for other levels of confidence. 
Changing the level of confidence changes the critical z-score. The following image shows the three most 
commonly used confidence levels and their critical z-scores. 

The following table summarizes the critical values for the most commonly used confidence levels. 
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Note: A more exact value for the margin of error of a 95% confidence interval uses Zc = 1.96 instead of 2 
standard errors. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=477#h5p-390 

Try It 

What Is the Effect of Increasing the Confidence Level on the 
Margin of Error? 

In an article titled “The Patriotism God Gap: Is the U.S. the Greatest Country in the World?” 

(Christianity Today, August 5, 2011), Tobin Grant cites data from the Pew Research Center. Here is 

an excerpt from the article: 

About 40 percent of other Christians [non-evangelicals] said the U.S. stands alone as the 

greatest country. Those with no religion stand out as being much less likely to see the U.S. as 

the greatest country. Only 20 percent said the U.S. was the best country in the world. 
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The article does not give the sample sizes for these two groups. For this activity, let’s suppose the 

data describes random samples of 500 from the populations of “other Christians” and those with 

“no religion.” With samples this large, we can safely model the sampling distribution of sample 

differences with a normal curve. 

Use the simulation to find the margin of error for the 90%, 95%, and 99% confidence intervals. 

(Note: Conditions for use of the confidence interval formula are met because the sample size is 

large.) 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=477#h5p-391 

CC licensed content, Shared previously 
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ESTIMATE THE DIFFERENCE BETWEEN 
POPULATION PROPORTIONS (3 OF 3) 

Learning outcomes 

• Construct a confidence interval to estimate the difference between two population 

proportions (or the size of a treatment effect) when conditions are met. Interpret the 

confidence interval in context. 

• Given the description of a statistical study, evaluate whether conclusions are reasonable. 

Drawing Conclusions from Confidence Intervals 

It is tempting to get involved in the details of calculating and interpreting a confidence interval without 
thinking about how the data was collected. Whether we are calculating a confidence interval or performing a 
hypothesis test, the results are meaningless without a properly designed study. 

Here is a quick review of what we already know about the connection between study design, use of inference 
procedures, and valid conclusions. 

• The goal of statistical inference is to use sample statistics to estimate population parameters. Therefore, 
the data must be a representative sample of the population of interest. This also applies to inference that 
compares two population parameters. 

• In general, we can use statistical inference procedures if the data come from randomly selected or 
randomly assigned individuals. 

• Cause-and-effect conclusions are possible when we randomly assign individuals to treatment groups in a 
well-designed experiment. 

• Since inference procedures are based on probability models, the data must also meet the specific 
conditions for the procedure we have chosen. 

In the next activities, we apply these ideas to the use of confidence intervals for estimating a difference 
between two population proportions (or estimating a treatment effect.) 
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An interactive H5P element has been excluded from this version of the text. You can view it 

online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=480#h5p-480 
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Try It 

Does Involving a Statistician Improve the Chance That a 
Medical Research Paper Will Be Published? 

The following excerpt from “How Statistical Expertise Is Used in Medical Research” (ALTMAN, D. G., 

S. N. GOODMAN, AND S. SCHROTER, JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION 287(21):2817–20, 

2002) describes the data collection method for this study. 

Authors of original research articles who submitted to BMJ [British Medical Journal] and 

Annals of Internal Medicine from May through August 2001 were sent a short 

questionnaire….Authors were asked if they received assistance from a person with statistical 

expertise. 

Of the 190 who did not work with a statistician, 134 had papers rejected without peer review. Of 

the 514 who did work with a statistician, 293 had papers rejected without peer review. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=480#h5p-392 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=480#h5p-393 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=480#h5p-394 
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Comment 

Even when inference is inappropriate, exploratory data analysis can give us important information. The 
authors of the previous study list two other reasons that their data “make inference difficult.” But they end 
their paper with the following statement. “Nevertheless, this study provides a picture of the norms and 
practices of this aspect of the medical research enterprise in 2001 and identifies several areas for possible 
exploration and improvement in the future.” 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=480#h5p-395 

Community College Student Athletes and Steroid Use 

Robert D. Kersey published an article titled “Anabolic-Androgenic Steroid Use among California Community 
College Student Athletes” (JOURNAL OF ATHLETIC TRAINERS 31(3):237 – 41, 1996) comparing various aspects 
of users and nonusers. The study used an advanced random sampling technique to select 10 representative 
community colleges in California and then to select a random sample of student athletes from the 10 colleges. 
The group of 1,185 male and female student-athletes completed an anonymous questionnaire. Of the sample, 
4.2% of the males and 1.2% of the females admitted to using steroids. 

Let’s Summarize 

Every confidence interval has the following form: 
statistic ± marginoferror 

To estimate a difference in population proportions (or a treatment effect), the statistic is a difference in 
sample proportions, so the confidence interval is 

(differenceinsampleproportions) ± marginoferror 
The margin of error is based on the estimated standard error in the sampling distribution: 
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If a normal model is a good fit for the sampling distribution, then the 95% confidence interval is 
(differenceinsampleproportions) ± 2(standarderror) 

 
Use this formula only if a normal model is a good fit for the sampling distribution. A normal model is a good 

fit when the counts of successes and failures in both samples are at least 10. 
When the conditions for normality are met, the confidence level is related to margin of error. To find a 

confidence interval for a different level of confidence, replace 2 with the appropriate z-score. 

There are many differences between sample proportions, . Each of these differences generates its 
own confidence interval. The proportion of confidence intervals that contains the difference between the 
population proportions, p1 – p2, is equal to the level of confidence. 

As always, “garbage in, garbage out.” The results of a confidence interval are meaningless without a properly 
designed study. 
CC licensed content, Shared previously 
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INTRODUCTION TO HYPOTHESIS TEST FOR 
DIFFERENCE IN TWO POPULATION 
PROPORTIONS 

What you’ll learn to do: Construct and interpret an 
appropriate hypothesis test to compare two population/
treatment group proportions. 

In this section we will learn to conduct a hypothesis test for comparing two population proportions or two 
treatments, under the appropriate conditions, and state a conclusion in context. We can use this to analyze 
real world examples such as insurance coverage as well as teen depression rates. We will also interpret the P-
value as a conditional probability. Then we will then identify type I and type II errors and select an appropriate 
significance level based on an analysis of the consequences of each type of error. 
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HYPOTHESIS TEST FOR DIFFERENCE IN 
TWO POPULATION PROPORTIONS (1 OF 6) 

Learning outcomes 

• Recognize when to use a hypothesis test or a confidence interval to compare two population 

proportions or to investigate a treatment effect for a categorical variable. 

• Under appropriate conditions, conduct a hypothesis test for comparing two population 

proportions or two treatments. State a conclusion in context. 

Introduction 

In Inference for Two Proportions, our focus is on inference that compares two populations or two treatments 
with a categorical response variable. The parameters and statistics are proportions. In the section “Estimate 
the Difference between Population Proportions,” we learned how to use a difference in sample proportions to 
calculate a confidence interval. The confidence interval estimates a treatment effect or the difference between 
two population proportions. In this section, “Hypothesis Test for a Difference in Population Proportions,” we 
learn to use a difference in sample proportions to test a hypothesis about a treatment effect or a hypothesis that 
compares two population proportions. 

We did hypothesis tests in Inference for One Proportion. Each claim involved a single population proportion. 
Now we will test claims about a treatment effect or about a difference in population proportions, and we’ll 
see that the steps and the logic of the hypothesis test are the same. Before we get into the details, let’s practice 
identifying research questions and studies that involve two populations or two treatments with a categorical 
response variable. Here are some examples. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=483#h5p-396 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=483#h5p-397 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=483#h5p-398 

Stating Hypotheses about Two Population Proportions 

Whenever we test a hypothesis, we begin by stating null and alternative hypotheses. 
The null hypothesis is a statement of “no effect” or “no difference,” so the null hypothesis for all hypothesis 

tests about two population proportions is H0: p1 − p2 = 0. When we say there is no difference in the population 
proportions (or no treatment effect), it is equivalent to saying that the population proportions are equal: p1 = 
p2. 

The alternative hypothesis is one of the following: 

Ha: p1 − p2 > 0 (or p1 > p2) 
Ha: p1 − p2 < 0 (or p1 < p2) 
Ha: p1 − p2 ≠ 0 (or p1 ≠ p2) 
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Example 

The Abecedarian Project 

Will early childhood education improve the likelihood of college attendance for poor children? Recall 

the experiment conducted by the Abecedarian (A-B-C-Darian) project in the 1970s. The study 

randomly assigned children to a control group (with no preschool) or a treatment group (with high-

quality preschool). 

To test the claim that the treatment increases the proportion of children who eventually attend 

college, we define a null and an alternative hypothesis. 

Define p1 to be the proportion of children who attend a quality preschool and eventually go to 

college. Define p2 to be the proportion of children who did not attend preschool but eventually go 

to college. 

The null hypothesis is always a statement of “no effect” or “no difference,” so we assume that 

these proportions are equal: p1 = p2. Their difference is therefore zero: 

H0: p1 − p2 = 0 

In this example, the null hypothesis says that the preschool treatment has no effect on the 

proportion of children who eventually go to college. 

The alternative hypothesis reflects our claim of a treatment effect. We chose to make p1 connected 

to the treatment, so our claim says that p1 is greater than p2 (p1 > p2). This translates into a 

difference that is greater than zero. It is positive: 

Ha: p1 − p2 > 0 

Establishing the null and alternative hypotheses in a comparison of two proportions is an important part of 
the hypothesis testing process. The next few activities provide an opportunity to practice this skill. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=483#h5p-399 
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HYPOTHESIS TEST FOR DIFFERENCE IN 
TWO POPULATION PROPORTIONS (2 OF 6) 

Learning outcomes 

• Under appropriate conditions, conduct a hypothesis test for comparing two population 

proportions or two treatments. State a conclusion in context. 

• Interpret the P-value as a conditional probability. 

Before we get into the details of the hypothesis test for a difference in two population proportions, let’s review 
the general steps in hypotheses testing that we learned in Inference for One Proportion. The steps and the logic 
of the hypothesis test are the same as in that module. We also practiced this type of thinking more informally 
in the section “Distribution of Differences in Sample Proportions.” 

Step 1: Determine the hypotheses. 

The hypothesis comes from the research question. The null hypothesis is a statement of “no effect” or “no 
difference.” The alternative hypothesis reflects our claim. 

Step 2: Collect the data. 

Ideally, we select two independent random samples from two populations, or we randomly assign subjects to 
two treatments in an experiment. 

Step 3: Assess the evidence. 

We assume that the null hypothesis is true. This means we assume the population proportions are the same. 
Then we ask, Could the data come from populations with the same proportions? Now imagine taking random 
samples from these populations. Even if there is no difference between the population proportions, we expect 
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variability in the differences between sample proportions. These differences are due to chance. We use 
simulation or a mathematical model to see how much the differences in sample proportions vary. Then we 
figure out if the difference we see in the data is likely or unlikely. Note that the wording “likely or unlikely” 
implies that this step requires some kind of probability calculation. We will again find a P-value. As before, the 
P-value is a probability related to the sampling distribution. It describes the chance that random samples will 
have a difference in sample proportions that is at least as extreme as we see in the data if the null hypothesis is 
true. “At least as extreme as” means as far from the center of the sampling distribution or further. 

Step 4: State a conclusion. 

We use the P-value to make a decision. The P-value helps us determine if the difference in proportions seen in 
the data is statistically significant or due to chance. One of two outcomes can occur. 

• One possibility: The difference in sample proportions from the data is extremely unlikely. In this case, 
there is only a small chance that proportions from random samples differ more than what we observed 
in the data. So the probability (the P-value) is small, suggesting that the data did not come from 
populations with the same proportions. We view this as strong evidence against the null hypothesis. We 
reject the null hypothesis in favor of the alternative hypothesis. 

• The other possibility: The difference in sample proportions observed in the data are fairly likely (not 
unusual). In this case, it is not surprising to see proportions from random samples with larger absolute 
differences than we observed in the data. The probability is large enough that we don’t think the data is 
unusual. It could come from populations with the same proportions. A large P-value suggests that we do 
not have evidence against the null hypothesis, so we cannot reject it in favor of the alternative hypothesis. 

Before we get into the details of the hypothesis test, let’s practice using the P-value to make a decision. 
Accordion Here. 

Try It 

Recall the Abecedarian Project. In this experiment researchers randomly assigned infants to a 

treatment or control group. The treatment group received 5-years of high quality pre-school. We 

previously stated the following hypotheses to test the claim that a larger proportion of children 

who received the treatment will attend college. 
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p1 is the the proportion of children who attend a quality preschool that eventually go to college. 

p2 is the the proportion of children who did not attend a quality preschool that eventually go to 

college. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=485#h5p-400 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=485#h5p-401 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=485#h5p-402 

CC licensed content, Shared previously 
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HYPOTHESIS TEST FOR DIFFERENCE IN 
TWO POPULATION PROPORTIONS (3 OF 6) 

Learning outcomes 

• Under appropriate conditions, conduct a hypothesis test for comparing two population 

proportions or two treatments. State a conclusion in context. 

• Interpret the P-value as a conditional probability. 

Details of This Hypothesis Test 

In a hypothesis test, we base our conclusion on the P-value. Where does the P-value come from? The P-
value comes from a normal model of the sampling distribution of differences in sample proportions. In 
“Distribution of Differences in Sample Proportions,” we saw that a normal model is a good fit for the sampling 
distribution if each sample has at least 10 successes and failures. 

We learned that the sampling distribution has the following center and spread. 
mean = 

standarderror = 

In the hypothesis test, we do not make a claim about either population proportion, so we do not have values 
for p1 and p2. For a confidence interval, we used the sample proportions,  and , to estimate those values. 
Here we use a different estimate. Since the null hypothesis states that the population proportions are equal, we 
use the same estimate for both population proportions. 

To do this, we combine the samples to create a pooled proportion. Here, x1 and x2 are the numbers of 
successes in the respective samples of sizes n1 and n2. We use the pooled proportion as an estimate for both 
population proportions. 

In a hypothesis test, we use the pooled proportion to estimate the standard error. 
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estimatedstandarderror=

We use the estimated standard error to calculate the Z-test statistic. 

Since p1 − p2 = 0 in the null hypothesis, the Z-test statistic simplifies to the following: 

After we calculate the Z-test statistic, we use a simulation or other technology to find the P-value from the 
standard normal curve. 

Example 

Comparing Wal-Mart’s with Other Firms’ Insurance Coverage 

Recall the 2003 press release by the AFL-CIO: 

Wal-Mart exemplifies the harmful trend among America’s large employers to shirk health 

insurance responsibilities at the cost of their workers and community….Fewer than half of 

Wal-Mart workers are insured under the company plan – just 46 percent. This rate is 

dramatically lower than the 66 percent of workers at large private firms who are insured 

under their companies’ plans, according to a new Commonwealth Fund study released today. 

This press release claims that there is a 20% difference in the proportion of workers with insurance 

when we compare Wal-Mart to other large private firms. In hypothesis testing for two population 

proportions, we cannot test a claim about a specific difference between two population 

proportions. Instead, we test a claim that the proportion of Wal-Mart workers with health 

insurance is less than the proportion of workers at large private firms with health insurance. 

Suppose we select a random sample of 50 Wal-Mart workers and find 23 have health insurance. 
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Suppose also that a random sample of 70 workers of large private firms had 43 with health 

insurance. 

For this test, we choose a 5% level of significance (α = 0.05). 

Step 1: State the hypotheses. 

Let p1 and p2 represent the proportions of workers with health insurance among Wal-Mart and 

large private company employees respectively. 

The null hypothesis is a claim of “no difference”: H0: p1 − p2 = 0. The alternative hypothesis states 

that the population proportion is lower for Wal-Mart employees: p1 < p2. The difference is less than 

zero, so it is negative: Ha: p1 − p2 < 0. 

Step 2: Collect the data. 

Of 50 Wal-Mart workers, 23 have health insurance. Of 70 workers from large private firms, 33 have 

health insurance. From the data, we can calculate the difference in sample proportions. 

 ≈ -0.154 

Step 3: Assess the evidence. 

Check the Normality Criteria 

Determine if a normal model is a good fit for the sampling distribution. Verify that there are at least 

10 successes and failures in each sample. Here, a success is an employee with health insurance. In 

the Wal-Mart sample, there are 23 successes and 50 − 23 = 27 failures. In the large private firms 

sample, there are 43 successes and 27 failures. Each of these is at least 10, so we can use the normal 

model. 

Compute the Test Statistic (only if the normal model is a good fit) 

The test statistic requires the standard error. To compute the standard error, we first compute the 

pooled proportion. 

 = 0.55 

We use the pooled proportion to estimate the standard error. 

 ≈ 0.092 

Recall the difference in sample proportions from the data. 
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 ≈ −0.154 

We use the z-score to determine how many standard errors −0.154 is from the mean of 0. 

 ≈ −1.67 

Note: A z-score of −1.67 tells us that the observed difference of  = −0.154 is 1.67 standard 

errors below the assumed difference of zero. Does this suggest that the observed difference is 

statistically significant? Since we stated a significance level of 5%, we need to find the P-value and 

compare it to 0.05. 

Identify the P-Value 

We use a simulation. We want the probability that the difference in sample proportions is less than 

−0.154. This corresponds to the probability that Z is less than −1.67. So we use the area to the left of 

the Z-test statistic. The P-value is about 0.047. If you like symbols, we can write this in 

mathematical notation. 

P (( ) < −0.154) = P (Z < −1.67) ≈ 0.047 

The P-value is small, about 4.7%. It means that if there is no difference in the population 

proportions, there is about a 4.7% chance that random samples will have a difference less than 

−0.154. The difference we observed in our samples, then, is fairly unlikely. We do not think this 

difference is due to chance. We see that the P-value is less than 5%, so we conclude that the 

difference we observed is statistically significant. 

Step 4: State a conclusion. 
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Use the P-Value to Make a Decision 

A P-value less than the significance level means we reject the null hypothesis. So we support the 

alternative hypothesis, p1 − p2 < 0, or more simply, p1 < p2. The given sample data support the claim 

that the proportion of Wal-Mart workers with health insurance is lower than the proportion of 

workers for large private companies. 

Comment 

If a normal model is a good fit for the sampling distribution, we use it to find the P-value. But let’s look at a 
simulation of the sampling distribution to remind ourselves what the P-value really means. 

The simulation can help us understand the P-value. In the simulation, we assume that the population 
proportions are the same, so the difference is 0. This is the null hypothesis. We assume the null hypothesis is 
true and select thousands of random samples from populations with the same proportion of successes. The 
mean of the sampling distribution is 0 (as predicted by the null hypothesis). We see this in the simulated 
sampling distribution on the left. 

We mark the difference in the sample proportions from our data. It is 23/50 − 43/70 = -0.15. This difference 
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has a z-score of −1.67. In the simulation of the sampling distribution, we can see that a difference smaller 
than −0.15 is unlikely. Very few samples have a difference less than −0.15. The normal model shows that the 
probability is about 4.7%. 

Putting this all together, we have the formal definition of the P-value. The P-value is the probability that 
random samples have results at least as extreme as the data if the null hypothesis is true. We can also describe 
the P-value in terms of z-scores. The P-value is the probability that the test statistic has a value more extreme 
than that associated with the data if the null hypothesis is true. 

An interactive H5P element has been excluded from this version of the text. You can view it 

online here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=489#h5p-481 

Try It 

Are There Gender Differences in Teen Depression Rates? 

Previous studies suggest that female teens are more likely than male teens to be depressed. Define 

the depression rates for the female and male teens as p1 and p2 respectively. If we claim that the 

depression rate is higher for female teens (p1 > p2), the null and alternative hypotheses are: 

H0: p1 − p2 = 0 

Ha: p1 − p2 > 0 

Let’s test the hypotheses at a 5% significance level. Suppose we randomly select 100 female teens 

and determine that 14 are clinically depressed. Among 200 randomly selected male teens, 16 are 

clinically depressed. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=489#h5p-452 
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Since the normal model is a good fit, we can use the standard normal curve to find the P-value. We 

used a simulation. The P-value is about 0.051. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=489#h5p-453 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=489#h5p-454 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
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HYPOTHESIS TEST FOR DIFFERENCE IN 
TWO POPULATION PROPORTIONS (4 OF 6) 

Learning outcomes 

• Under appropriate conditions, conduct a hypothesis test for comparing two population 

proportions or two treatments. State a conclusion in context. 

• Given the description of a statistical study, evaluate whether conclusions are reasonable. 

Reminder about Finding P-values 

In a hypothesis test, the P-value is based on the assumption that the null hypothesis is true. But the P-value 
is also related to the alternative hypothesis. The logic here is the same logic we used in Inference for One 
Proportion with hypothesis tests. 

When Ha: p1 − p2 < 0, the difference in sample proportions from the data must be significantly less than
zero to provide evidence against the null hypothesis and in favor of the alternative hypothesis. In this case, the 
P-value describes differences in sample proportions that are less than the difference observed in the data. This is 
the area to the left of the test statistic. We call it a left-tailed test. 

Similarly, when Ha: p1 − p2 > 0, the difference in sample proportions observed in the data must be 
significantly greater than zero to provide evidence against the null hypothesis and in favor of the alternative 
hypothesis. In this case, the P-value describes differences in sample proportions that are greater than the 
difference observed in the data. This is the area to the right of the test statistic. We call it a right-tailed test. 

When Ha: p1 − p2 ≠ 0, the difference in sample proportions observed in the data must be significantly 
different from zero to provide evidence against the null hypothesis and in favor of the alternative hypothesis. 
In this case, the P-value is two-tailed. It is twice the area of the smaller tail defined by the test statistic. 
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The next two activities provide more practice with conducting a hypothesis test for a difference between two 
population proportions. You will need the simulation below to complete these activities. 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=491 

Try It 

Is a New Antidepressant Effective in Treating Depression? 

Depression has many effective treatment options. Suppose that in a clinical trial researchers study a 

new antidepressant. They randomly assign 90 depressed teens to one of two groups: 40 teens 

receive the antidepressant Fluoxetine with psychiatric therapy. Of these, 25 improve. The remaining 

50 teens receive placebos with psychiatric therapy. Among this group, 18 improve. The experiment 

is double blind, so neither the teens nor the psychiatrists know which participants receive 

Fluoxetine or placebo. 

Define p1 and p2 to be the proportions of all teens who improve when taking Fluoxetine and 

placebo, respectively, with psychiatric treatment. We will test the claim, at 1% significance (α = 
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0.01), that the proportion of teens who improve after the Fluoxetine treatment is greater than the 

proportion for teens who received a placebo. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=491#h5p-455 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=491#h5p-456 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=491#h5p-457 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=491#h5p-458 
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Try It 

Are There Racial Differences in Antidepressant Use? 

The following excerpt is from an article by Kerry Sheridan, “In the US, Many with Severe Depression 

Go Untreated” (AFP, Oct. 19, 2011). 

The United States is a world leader in rates of antidepressant use, but as many as two-thirds 

of Americans with severe depression are not on medication….The data also showed 

significant racial and ethnic differences, with almost 14 percent of non-Hispanic whites 

taking antidepressants compared to four percent of African-Americans and three percent of 

Mexican-Americans….[E]ven though non-whites are getting treated less often, studies have 

shown that they are just as likely as whites to suffer from depression. Income appeared to 

play no role in the prevalence of antidepressant usage, said the study. 

The data in this study comes from 12,637 people who were interviewed as part of the National 

Health and Nutrition Examination Surveys (NHAMES) from 2005 to 2008. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=491#h5p-459 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=491#h5p-460 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=491#h5p-461 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=491#h5p-462 
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HYPOTHESIS TEST FOR DIFFERENCE IN 
TWO POPULATION PROPORTIONS (5 OF 6) 

Learning outcomes 

• Given the description of a statistical study, evaluate whether conclusions are reasonable. 

Thinking Critically about Conclusions from Statistical 
Studies 

It is not uncommon to see debate over the conclusions and implications of statistical studies. When we read 
summaries of statistical studies, it is important to evaluate whether the conclusions are reasonable. Here we 
discuss two common pitfalls in drawing conclusions from statistical studies. 

1. The conclusion is not appropriate to the study design. 
2. The conclusion confuses statistical significance with practical importance. 

We discuss these pitfalls in general, then look at examples that involve an inference about the difference 
between two population proportions or two treatments. But these pitfalls can happen with conclusions drawn 
from any inference procedure. 

When The Conclusion Is Not Appropriate to the Study 
Design 

Here are several examples of this common pitfall. 

1. The study makes an inference based on nonrandom data.If the data come from a sample that is not 
randomly selected or from groups that are not randomly assigned, we should not use the data in 
inference procedures. Why? Well, all inference procedures are based on probability. We can make 
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probability statements only about random events, so the data must come from randomly selected or 
randomly assigned individuals if we want to make a statement about the population on the basis of the 
data. With nonrandom data, our main option is to analyze the data using exploratory data analysis (the 
ideas from Modules 2, 3, and 4). 

2. The study makes inappropriate cause-and-effect conclusions.We can make cause-and-effect 
conclusions only with data from a randomized comparative experiment. If data comes from a single 
observational study, we cannot make cause-and-effect conclusions. 

3. The study overgeneralizes its conclusions.If researchers randomly assign individuals to one of two 
treatments in an experiment, statistically significant results suggest the treatment is effective. This is an 
appropriate causal conclusion if the experiment is well designed. But if the original group of individuals 
is not randomly selected, then we should be cautious about generalizing this conclusion to a broader 
population. 

The following table summarizes these ideas. 
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Try It 

Do Energy Drink “Cocktails” Lead to Increased Injury Risk? 

The following excerpt is from “Energy Drink ‘Cocktails’ Lead to Increased Injury Risk, Study Shows” 

(SCIENCE DAILY, WWWESCIENCEDAILY.COM, NOV. 6, 2007). 

College students who drink alcohol mixed with so-called “energy” drinks are at dramatically 

higher risk for injury and other alcohol-related consequences, compared to students who 

drink alcohol without energy drinks….The researchers found that students who consumed 

alcohol mixed with energy drinks were twice as likely to be hurt or injured, twice as likely to 

require medical attention, and twice as likely to ride with an intoxicated driver. 

The study collected data from a Web-based survey of 4,271 students at 10 North Carolina colleges 

and universities. 

Following are two summaries of this study. Are these summaries appropriate? Explain. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=493#h5p-463 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=493#h5p-464 

When The Conclusion Confuses Statistical Significance 
with Practical Importance 

Is a statistically significant difference always large enough to be important on a practical level? The answer is 
no. 
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Recall that when a P-value is less than the level of significance, we say the results are statistically significant. 
It means that the results are not due to chance. In the case of a difference in sample proportions, we are saying 
that the observed difference is larger than we expect to see in random samples from populations with the same 
population proportions. But this does not necessarily mean the difference is large enough to be important in 
real life. 

We also know that the P-value depends on the size of the sample. Results from large samples vary less, so 
an observed difference is more likely to be statistically significant if the samples are large. This means that a 
very small difference in population parameters can be detected by the hypothesis test as statistically significant. 
In this case, the population difference may be too small to be important to decisions we might make in real 
life. On the other hand, small random samples can have a lot of variability in their results. In this case, a large 
population difference may go undetected by the hypothesis test because a large sample difference may not 
be statistically significant. We have to be cautious that we don’t confuse statistical significance with practical 
importance. 

Example 

Controversy about HPV Vaccine 

Recall the earlier example about the debate between Republican presidential candidates in 2011. 

Michele Bachmann, one of the candidates, implied that the vaccine for human papillomavirus (HPV) 

is unsafe for children and can cause mental retardation. In response, USA Today published an article 

on September 19, 2011, titled “No Evidence HPV Vaccines Are Dangerous.” The article describes two 

studies by the Centers for Disease Control and Prevention (CDC) that track the safety of the 

vaccine. Here is an excerpt from the article. 

First, the CDC monitors reports to the Vaccine Adverse Event Reporting System, a database 

to which anyone can report a suspected side effect. CDC officials then investigate to see 

whether reported problems could possibly be caused by vaccines or are simply a coincidence. 

Second, the CDC has been following girls who receive the vaccine over time, comparing them 

with a control group of unvaccinated girls….Again, the HPV vaccine has been found to be 

safe. 

We now examine “fake” data to demonstrate a couple of points. Suppose the CDC conducts a 

clinical trial to study the safety of the vaccine. Researchers select a random sample of girls and 

assign girls randomly to two groups: 1,000 girls get the vaccine, and 1,000 girls do not. Suppose 
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that 6 girls in the vaccinated group develop serious health problems, and 1 girl in the unvaccinated 

group develops serious health problems. 

Is this difference statistically significant at the 5% level? 

Yes. If we use a statistical software package to find the P-value, we get a P-value of about 0.03. So 

the data supports the claim that the proportion of serious side effects is greater in the vaccine 

group (P is about 0.03). 

Is the difference of practical importance? We investigate ways to think about this next. 

Try It 

Controversy about HPV Vaccine 

Suppose a headline summarizing this experiment says “Vaccine Leads to Significantly Higher Risk of 

Serious Health Problems for Girls.” Indicate whether each critique of this headline is valid or invalid. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=493#h5p-465 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=493#h5p-466 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=493#h5p-467 

Someone reading the headline “Vaccine Leads to Significantly Higher Risk of Serious Health 

Problems for Girls” might think that it is very risky to have the vaccine. Practical importance here 

involves how someone judges the risk of vaccination. 

Here are two headlines that make statements about the risk associated with the vaccine. Indicate 

whether the statements are valid or invalid. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=493#h5p-468 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=493#h5p-469 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=493#h5p-470 
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HYPOTHESIS TEST FOR DIFFERENCE IN 
TWO POPULATION PROPORTIONS (6 OF 6) 

Learning outcomes 

• Identify type I and type II errors and select an appropriate significance level based on an 

analysis of the consequences of each type of error. 

Review of Type I and Type II Errors 

Inference is based on probability, so there is always some chance of making a wrong decision. Recall that two 
types of wrong decisions can be made in hypothesis testing. When we reject a null hypothesis that is true, we 
commit a type I error. When we fail to reject a null hypothesis that is false, we commit a type II error. 

The following table summarizes the logic behind type I and type II errors. 

It is possible to have some influence over the likelihoods of committing these errors, but decreasing the 
chance of a type I error increases the chance of a type II error. We have to decide which error is more serious for 
a given situation. Sometimes a type I error is more serious, and other times a type II error is more serious. 
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Try It 

Teens and Antidepressants 

Recall the description of a clinical trial in which researchers study the effect of a new antidepressant 

on teens. Researchers design a randomized, controlled, double-blind experiment to study the effect 

of the antidepressant Fluoxetine combined with psychiatric therapy. The control group receives a 

placebo and psychiatric therapy. The response variable is improvement, which means symptoms of 

depression improve. 

The hypotheses are as follows, with p1 = proportion of teens who improve in the treatment group 

(Fluoxetine and psychiatric therapy) and p2 = proportion of teens who improve in the control group 

(placebo and psychiatric therapy). 

H0: p1 − p2 = 0 

Ha: p1 − p2 > 0 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=495#h5p-471 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=495#h5p-472 

Decreasing the Chance of Type I or Type II Error 

How can we decrease the chance of a type I or type II error? Because decreasing the chance of a type I error 
increases the chance of a type II error, we have to weigh the consequences of these errors before deciding how 
to proceed. 

Recall that the probability of committing a type I error is α. Why? Well, when we choose a level of 
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significance (α) , we are choosing a benchmark for rejecting the null hypothesis. If the null hypothesis is true, 
then the probability that we will reject a true null hypothesis is α. So the smaller α is, the smaller the probability 
of a type I error. 

It is more complicated to calculate the probability of a type II error. The best way to reduce the probability 
of a type II error is to increase the sample size. But once the sample size is set, larger values of α will decrease the 
probability of a type II error (while increasing the probability of a type I error). 

Following are general guidelines for choosing a level of significance: 

• If the consequences of a type I error are more serious, choose a small level of significance (α). 
• If the consequences of a type II error are more serious, choose a larger level of significance (α). But 

remember that the level of significance is the probability of committing a type I error. 
• In general, we pick the largest level of significance that we can tolerate as the chance of a type I error. 

Note: It is not always the case that one type of error is worse than the other. 

Try It 

Hormone Replacement Therapy 

Recall the experiment that investigated the side effects of hormone replacement therapy (HRT) for 

women with menopausal symptoms. The experiment randomly assigned over 16,000 U.S. women 

to receive a hormone treatment or a placebo. The experiment was double blind. After 5 years, a 

larger proportion of the hormone group had breast cancer and heart disease. This observed 

difference was statistically significant. Researchers were so alarmed by the results that the 

experiment was ended early to prevent further harm to the health of the women participating in 

the hormone group. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=495#h5p-473 

The type I error in this situation is that we conclude that HRT increases the risk of breast cancer 
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and heart disease, but it does not. The type II error is that we conclude that HRT does not increase 

the risk of breast cancer and heart disease, but it does. 

Identify the type of error associated with each consequence. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=495#h5p-474 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=495#h5p-475 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=495#h5p-476 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=495#h5p-477 

Let’s Summarize 

• Hypothesis tests for two proportions can answer research questions about two populations or two 
treatments that involve categorical data. 

• The null hypothesis for the two-proportions test is always a statement of “no difference.” 
H0: p1 − p2 = 0 
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The alternative hypothesis is one of the following. 
Ha: p1 − p2 < 0, or 
Ha: p1 − p2 > 0, or 
Ha: p1 − p2 ≠ 0 

• The test statistic for the two proportions test is similar to the test statistic for one sample proportion 
tests. 

This statistic is approximately normal in its distribution if each sample has at least ten successes and failures. 
Note that the standard error is estimated with pooled proportion. 

• The normal distribution may be used to provide P-values for a two-proportions test if each sample has at 
least 10 successes and failures. 

• When the P-value in a two-proportions test is less than the level of significance (α), we should reject the 
null hypothesis in favor of the alternative. In this case, we say that the differences are statistically 
significant. 

• Two types of errors can be made when conducting a hypothesis test. 
◦ A type I error occurs when we reject a true null hypothesis. 
◦ A type II error occurs when we fail to reject a false null hypothesis. 
◦ The level of significance, α, is the probability of a type I error. 
◦ Increasing the sample size lowers the probability of a type II error. 
◦ After considering the consequences of the type I and II errors, we should choose the largest value 

for α that we can tolerate, because increasing α decreases the probability of a type II error. 
• After conducting a hypothesis test, it is important to consider whether the conclusions are reasonable. 

We discussed two common pitfalls in drawing conclusions from statistical studies.(1) The conclusion is 
not appropriate to the study design. 

◦ The study makes an inference based on nonrandom data. 
◦ The study makes inappropriate cause-and-effect conclusions. 
◦ The study overgeneralizes its conclusions. 

(2) The conclusion confuses statistical significance with practical importance. 
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PUTTING IT TOGETHER: INFERENCE FOR 
TWO PROPORTIONS 

Let’s Summarize 

In Inference for Two Proportions, we learned two inference procedures to draw conclusions about a difference 
between two population proportions (or about a treatment effect): (1) a confidence interval when our goal is 
to estimate the difference and (2) a hypothesis test when our goal is to test a claim about the difference. Both 
types of inference are based on the sampling distribution. 

Distribution of the Differences in Sample Proportions 

In the section “Distribution of Differences in Sample Proportions,” we learned about the sampling 
distribution of differences between sample proportions. 

We used simulation to observe the behavior of sample differences when we select random samples from two 
populations. Every simulation began with an assumption about the difference between the two population 
proportions. From the simulated sampling distribution, we could determine if a sample difference observed 
in the data was likely or unlikely. A data result that is unlikely to occur in the sampling distribution provides 
evidence that our original assumption about the difference in the population proportions is probably 
incorrect. This logic is similar to the logic of hypothesis testing. 

Because samples vary, we do not expect sample differences to always equal the population difference. Every 
sample difference has some error. We used simulations to observe the amount of error we expected to see in 
sample differences. The “typical” amount of error in the sampling distribution connects to the margin of error 
in a confidence interval. 

We also used simulations to describe the shape, center, and spread of the sampling distribution. Later we 
developed a mathematical model for the sampling distribution with formulas for the mean of the sample 
differences and the standard deviation of the sample differences. We call this standard deviation the standard 
error because it represents an estimate for the average error we see in sample differences. 

The mean of sample differences between sample proportions is equal to the difference between the 
population proportions, p1 − p2. 
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The standard error of differences between sample proportions is related to the population proportions and 
the sample sizes. 

A normal model is a good fit for the sampling distribution of differences between sample proportions under 
certain conditions. We use a normal model if the counts of expected successes and failures are at least 10. For 
those who like formulas, this translates into saying the following four calculations must all be at least 10. 

n1p1 

n1(1 − p1) 
n2p2 

n2(1 − p2) 

Estimating the Difference between Two Population 
Proportions 

In the section “Estimate the Difference between Population Proportions,” we learned how to calculate a 
confidence interval to estimate the difference between two population proportions (or to estimate a treatment 
effect). 

Every confidence interval has the form: 
statistic ± marginoferror 

To estimate a difference in population proportions (or a treatment effect), the statistic is a difference in 
sample proportions. So the confidence interval is 

(differenceinsampleproportions) ± marginoferror 
Also, since we do not know the values of the population proportions, we estimate the standard error by 

using sample proportions in the formula for the margin of error. 
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Here are the critical Z-values for commonly used confidence levels. 

Confidence Level Critical Value Zc 

90% 1.645 

95% 1.960 

99% 2.576 

The connection between the confidence level and critical Z-value depends on the use of a normal model. We 
use a normal model if each sample has at least 10 successes and failures. 

We practiced interpreting confidence intervals and confidence levels. For example, we say we are “95% 
confident” that the population difference lies within the calculated confidence interval. We do not say there is a 
95% chance that the population difference lies within the calculated interval. 95% confident means that in the 
long run 95% of the confidence intervals will contain the population differences. 

Hypothesis Test for a Difference in Two Population 
Proportions 

In the section “Hypothesis Test for a Difference in Population Proportions,” we tested claims regarding the 
difference between two population proportions (or a treatment effect). 

In testing such claims, the null hypothesis is 

H0: p1 − p2 = 0 

The alternative hypothesis is one of three: 

Ha: p1 − p2 < 0, or 
Ha: p1 − p2 > 0, or 
Ha: p1 − p2 ≠ 0 

These are equivalent to the following comparisons of p1 and p2. 

Ha: p1 < p2 

Ha: p1 > p2 

Ha: p1 ≠ p2 
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We use the same criteria for determining if a normal model is a good fit for the sampling distribution: each 
sample must have at least 10 successes and failures. 

In a hypothesis test, we assume the null hypothesis is true. Since we do not have values for p1 and p2, we again 
use sample data to estimate them. In the null hypothesis the population proportions are equal, so we create a 
single-value estimate for the population proportions using the pooled proportion. 

With this pooled proportion, we estimate the standard error to compute the Z-test statistic for the 
hypothesis test. We can always view the z-score as the error in the statistic divided by the standard error. In a 
hypothesis test, we predict the error on the basis of the null, and we estimate the standard error. 

If the conditions for approximate normality are met, this standardized statistic is approximately normal. 
This fact allows us to determine a P-value using computer software. 

Whenever the P-value is less than or equal to the level of significance, we reject the null hypothesis in favor 
of the alternative. Otherwise, we fail to reject (but do not support) the null hypothesis. 

Because our conclusions are based on probability, there is always a chance that our data will lead us to an 
incorrect conclusion. We make a type I error when we reject a true null hypothesis. We make a type II error 
when we fail to reject a false null hypothesis. These errors are not the result of a mistake. They are due to 
chance. 

The level of significance, α, is the probability of a type I error. The probability of a type II error is harder to 
calculate. We did not learn to calculate type II error. Small values of α increase the probability of a type II error. 
Larger samples sizes decrease the probability of a type II error. 

Finally, we should always remember “garbage in, garbage out.” If random selection or random assignment is 
not used to produce the data, we should not do inference. 
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WHY IT MATTERS: INFERENCE FOR MEANS 

Learning OUtcomes 

• Recognize when to use a hypothesis test or a confidence interval to draw a conclusion about 

a population mean. 

Why learn to make inferences about population means? 

In Inference for Means, we learn to make inferences about population means. Here are the types of research 
questions we focus on. Notice that we are working with quantitative variables for the first time in our inference 
work. 

Type of Question Examples Variable 
Type Unit 

Make an estimate 
about the population 

What proportion of all U.S. adults support the death 
penalty? 

Categorical 
variable 

Inference for 
One Proportion 

What is the average number of hours that 
community college students work each week? 

Quantitative 
variable 

Inference for 
Means 

Test a claim about the 
population 

Do the majority of community college students qualify 
for federal student loans? 

Categorical 
variable 

Inference for 
One Proportion 

Has the average birth weight in a town decreased 
from 3,500 grams? 

Quantitative 
variable 

Inference for 
Means 

Compare two 
populations 

Are teenage girls more likely to suffer from depression 
than teenage boys? 

Categorical 
variable 

Inference for 
Two 
Proportions 

In community colleges do female students have a 
higher average GPA than male students? 

Quantitative 
variable 

Inference for 
Means 

Here again is the Big Picture. We have highlighted ideas new to this module in purple. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=500#h5p-168 
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INTRODUCTION TO DISTRIBUTION OF 
SAMPLE MEANS 

What you’ll learn to do: Describe the sampling distribution 
of sample means. 

In this section we will recognize when to use a hypothesis test or a confidence interval to draw a conclusion 
about a population mean. We then will describe the sampling distribution of sample means and draw 
conclusions about a population mean from a simulation. This has many applications in the world for analyzing 
heights of basketball players to teachers salaries. 

CC licensed content, Shared previously 
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DISTRIBUTION OF SAMPLE MEANS (1 OF 4) 

Learning outcomes 

• Describe the sampling distribution of sample means. 

• Draw conclusions about a population mean from a simulation. 

How Sample Means Vary in Random Samples 

In Inference for Means, we work with quantitative variables, so the statistics and parameters will be means 
instead of proportions. 

We begin this module with a discussion of the sampling distribution of sample means. Our goal is to 
understand how sample means vary when we select random samples from a population with a known mean. 
We did this same type of thinking with sample proportions in the module Linking Probability to Statistical 
Inference to understand the distribution of sample proportions. Ultimately, we develop a probability model 
based on this sampling distribution. We use the probability model with an actual sample mean to test a claim 
about population mean or to estimate a population mean. This task is similar to the type of work we did in 
Inference for One Proportion with proportions when we tested hypotheses and created confidence intervals. 
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Example 

Birth Weights 

The World Health Organization (WHO) monitors many variables to assess a population’s overall 

health. One of these variables is low birth weight. A birth weight under 2,500 grams is a low birth 

weight. Low birth weight is a categorical variable because the birth weight is either under 2,500 

grams or it is not. The WHO collects data from hospitals and other health-care institutions and can 

use this sample data to find a confidence interval to estimate the proportion of all babies in a 

country with a low birth weight. This type of inference comes from Inference for One Proportion. 

In this module, we work with quantitative variables. In this example, we use birth weight as a 

quantitative variable. To analyze the quantitative variable birth weight, we use means. 

Suppose that babies in a town had a mean birth weight of 3,500 grams in 2005. This year, a 

random sample of 9 babies has a mean weight of 3,400 grams. 

• The 3,500 is a parameter from a population. We use the Greek letter µ to represent it: µ = 

3,500 grams. 

• The 3,400 is a statistic from a sample, so we write = 3,400 grams. 

Obviously, this sample weighs less on average than the population of babies in the town. A 

decrease in the town’s mean birth weight could indicate a decline in overall health of the town. But 

863  |  



does this sample give strong evidence that the town’s mean birth weight is less than 3,500 grams 

this year? 

To answer this question, we need to understand how much the means from random samples vary. 

Would a sample be likely – or unlikely – to have a mean birth weight of 3,400 grams if the mean 

weight of all the babies is 3,500 grams? 

We outline this investigation in the following diagram: 

As before, the logic of inference is the same. Begin with a population with µ = 3,500, and take 

random samples of 9 babies at a time. 

• If a sample mean of 3,400 is likely to occur when sampling from a population with µ = 3,500, 

then this sample could have come from a population with a mean of 3,500. The evidence 

from the sample therefore is not strong enough to reject the idea that µ = 3,500. 

• If a sample mean of 3,400 is unlikely when sampling from a population with µ = 3,500, then 

the sample provides evidence that the mean weight for all babies in the population is less 

than 3,500. 

Likely or unlikely? It depends on how much the sample means vary. We need to investigate the 

sampling distribution of sample means. 

Try It 

Refer to the previous example. These questions focus on how sample mean birth weights will vary. 

Use this simulation to select a random sample of 9 babies from the town. Assume µ = 3,500. 
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Repeat many times to observe how the mean birth weights for the samples vary. Then answer the 

questions. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=506#h5p-169 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=506#h5p-170 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=506#h5p-171 

In the next example, we predict what happens in the long run when we select many, many random samples 
of 9 babies at a time from a population with a mean birth weight of 3,500 grams. Then we watch a simulation 
to see if our predictions are correct. 

Example 

Predicting the Behavior of Mean Birth Weights 

Note: Means of samples randomly selected from a population are consequently random variables 

themselves because the means of random samples vary unpredictably in the short run but have a 

predictable pattern in the long run. Based on our intuition, what we experienced with the 
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simulation, and what we learned about the behavior of samples in previous modules, we might 

expect the following about the distribution of sample means that come from a population where µ 

= 3,500: 

Center: Some sample means will be on the low side – say 3,000 grams or so – while others will be 

on the high side – say 4,000 grams or so. In repeated sampling, we might expect that the random 

samples will average out to the underlying population mean of 3,500 grams. In other words, the 

mean of the sample means will be µ. This is exactly what we observed in the case of proportions in 

Linking Probability to Statistical Inference. There, the mean of sample proportions was the 

population proportion. 

Spread: For large samples, we might expect that sample means will not stray too far from the 

population mean of 3,500. Sample means lower than 3,000 or higher than 4,000 might be 

surprising. For smaller samples, we would be less surprised by sample means that varied quite a bit 

from 3,500. In others words, we might expect greater variability in sample means for smaller 

samples. So sample size again plays a role in the spread of the distribution of sample statistics, just 

as we observed for sample proportions. 

Shape: Sample means closest to 3,500 will be the most common, with sample means far from 

3,500 in either direction progressively less likely. In other words, the shape of the distribution of 

sample means should be somewhat normal. This, again, is what we saw when we looked at 

sample proportions. 

The discussion of shape, center, and spread here is not very specific. We work toward making these 
statements more specific over the next two pages. 

Now let’s see if our predictions about the sampling distribution are correct. In the next simulation, we 
randomly select thousands of random samples of 9 babies each. 

WalkThrough Simulation 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=506#oembed-1 

The distribution of the values of the sample mean  in repeated samples is called the sampling distribution 
of . 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=506#h5p-172 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=506#h5p-173 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=506#h5p-174 

Try It 

Here is the sampling distribution for samples of size 9 from the simulation where µ = 3,500. It looks 

different because we zoomed in. This changed the scale for the sample means. We also marked the 

actual sample mean of 3,400 grams. 
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Are these statements valid or invalid? 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=506#h5p-175 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=506#h5p-176 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=506#h5p-177 

At this point, you may be wondering if we should use a larger sample to answer our question. Will our 
conclusion change if we increase the number of babies in the sample? We investigate this question next. 
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DISTRIBUTION OF SAMPLE MEANS (2 OF 4) 

Learning outcomes 

• Describe the sampling distribution of sample means. 

Our next goal is to determine how the size of the sample affects the variability we see in sample means. 

Example 

Sample Size Affects Variability of Sample Means 

We assumed that the population of individual babies has a mean of µ = 3,500 grams and a 

standard deviation of σ = 500 grams. We selected a random sample of babies to test our 

assumptions about the population. 

We saw previously that for this population of babies, it was not surprising to see a random sample 

of 9 babies with a mean birth weight of 3,400 grams. So a sample with a mean of 3,400 does not 

suggest that the town’s mean birth weight is less than 3,500 grams this year. 

What if we increase the sample size? Will our conclusion change? That is, if the mean birth weight 

of 3,400 grams comes from a larger sample of babies, does the sample provide stronger evidence 

that the town’s mean birth weight is less than 3,500 grams? 

To investigate this question, we ran the simulation for different sample sizes. For each sample size, 

we collected 1,000 random samples and recorded the sample means. 
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When we compare the histograms of sample means, we notice the following: 

• Center: The center is not affected by sample size. The mean of the sample means is always 

approximately the same as the population mean µ = 3,500. 

• Spread: The spread is smaller for larger samples, so the standard deviation of the sample 

means decreases as sample size increases. This is not surprising because we observed a 

similar trend with sample proportions. 

• Shape: The sampling distributions all appear approximately normal. This is not surprising 

because the distribution of birth weights in the population has a normal shape. 

Based on the histograms, it appears that sample size will change our conclusion about the 

population’s mean birth weight this year. Suppose our sample mean of 3,400 grams came from a 

random sample of 100 babies. Means from samples this large did not vary much. We marked this 

sample result in a histogram for samples of size 100. 

For n = 100, a sample mean of 3,400 grams is an unlikely result. It gives fairly strong evidence that 

the population’s mean birth weight is less than 3,500 grams. 

From advanced probability theory, we have a probability model for the sampling distribution of sample 
means. The model reinforces what we have already observed about the center and gives more precise 
information about the relationship between sample size and spread. 
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Theoretical Probability Model for the Sampling Distribution 
of Sample Means 

Suppose a population has a mean µ and a standard deviation of σ. The distribution of all possible sample means 
from this population will have a mean of µ and a standard deviation of . 

. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=509#h5p-178 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=509#h5p-179 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=509#h5p-180 
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Let’s compare and contrast what we know about the sampling distributions for sample means and sample 
proportions. 

Sampling Distribution 

Variable Parameter Statistic Center Spread 

Categorical (example: 
left-handed or not) 

p = population 
proportion 

= sample proportion p 

Quantitative (example: 
age) 

μ = population mean, σ 
= population standard 
deviation 

= sample mean μ 

We investigate the conditions that guarantee a normal sampling distribution for sample means on the next 
page. 
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DISTRIBUTION OF SAMPLE MEANS (3 OF 4) 

Learning outcomes 

• Describe the sampling distribution of sample means. 

Shape of the Sampling Distribution of Means 

Now we investigate the shape of the sampling distribution of sample means. When we discussed the sampling 
distribution of sample proportions, we learned that this distribution is approximately normal if np ≥ 10 and 
n(1 – p) ≥ 10. In other words, we had a guideline based on sample size for determining the conditions under 
which we could use a normal curve to do probability calculations for sample proportions. 

Now we investigate these questions: 

• When will the distribution of sample means be approximately normal? 
• Does it depend on the size of the sample? 
• What happens if the distribution of the variable in the population is heavily skewed? 

The following simulation video helps us investigate these questions. 

WalkThrough Simulation 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=513#oembed-1 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=513#h5p-181 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=513#h5p-182 

Comment 

Are you surprised that a variable with a skewed distribution in the population can have a sampling distribution 
that is approximately normal? This discovery is probably the single most important result presented in 
introductory statistics courses. It is called the central limit theorem, which says that for large samples, 
the sampling distribution of sample means is approximately normal. This theorum is important! Inference 
procedures, such as hypothesis tests and confidence intervals, are based on a normal model for the sampling 
distribution. The central limit theorem assures us that we can use a normal probability model for sample means 
without knowing anything about the shape of the distribution of the variable in the population. All we have 
to do is collect large samples. 

How large a sample size do we need to assume that sample means will be normally distributed? It really 
depends on the population distribution, as we saw in the simulation. The more skewed the distribution in the 
population, the larger the samples we need in order to use a normal model for the sampling distribution. 

The general guideline is that samples of size greater than 30 will have a fairly normal distribution regardless 
of the shape of the distribution of the variable in the population. But if a population is strongly skewed, it is 
safer to use larger samples. 
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Try It 

The distribution of incomes is strongly skewed to the right for individuals in the U.S. The following 

histograms represent mean income from 200 samples randomly selected from the U.S. population. 

One histogram is based on samples of size of n = 4, one on samples of size of n = 40, and one on 

samples of size of n = 100. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=513#h5p-184 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=513#h5p-183 

Summary 

• Let’s say we have a quantitative data set from a population with mean μ and standard deviation σ.The 
model for the theoretical sampling distribution of means of all random samples of size n has the 
following properties: 

◦ The mean of the sampling distribution of means is μ. 
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◦ The standard deviation of the sampling distribution of means is . 
▪ Notice that as n grows, the standard deviation of the sampling distribution of means shrinks. 

• For large enough sample size, the sampling distribution of means is approximately normal (even if 
population is not normal). 

◦ If a variable has a skewed distribution for individuals in the population, a larger sample size is 
needed to ensure that the sampling distribution has a normal shape. 

◦ The general rule is that if n is more than 30, then the sampling distribution of means will be 
approximately normal. However, if the population is already normal, then any sample size will 
produce a normal sampling distribution. 

Comment 

Notice that the size of the population is not mentioned in our discussion of sampling distributions. From our 
discussion, we know the following: 

• The means from larger samples have less variability, so larger samples give more accurate estimates of the 
population mean. 

• The means from larger samples have a distribution with a shape that is closer to normal. 

These statements are true regardless of the size of the population as long as the population is large. To 
illustrate this point, we compare a distribution of sample means from two populations of different sizes. 
Population A has 10,000 newborns. Population B has 20,000 newborns. For each population, the mean and 
standard deviation of individual birth weights is the same: μ = 3,500 and σ = 500. 

We selected 525 random samples of 100 babies from each population and made a histogram of the sample 
means. We did this twice for population A, so two of the histograms represent 525 samples from the same 
population. As expected, there are some differences in the samples collected due to random chance. Comparing 
these two histograms gives us a sense of how much variation we can expect from the process of selecting 
random samples. Notice that the histogram of sample means from the larger population B has a similar shape, 
center, and spread to the histograms from population A. 

  |  878



What’s the Main Point? 

The size of the population does not affect the variability of the sample means. Size matters if we are talking 
about sample size for random samples, but size does not matter if we are talking about population size as long 
as the population is large. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=513#h5p-185 
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DISTRIBUTION OF SAMPLE MEANS (4 OF 4) 

Learning outcomes 

• Estimate the probability of an event using a normal model of the sampling distribution. 

Let’s compare what we have learned about sampling distributions for proportions and for means. 

Sampling Distribution 

Variable Parameter Statistic Center Spread 

Categorical (example: 
left-handed or not) 

p = population 
proportion 

= sample proportion p 

Quantitative (example: 
age) 

μ = population mean, σ 
= population standard 
deviation 

= sample mean μ 

Now we know the conditions that allow us to use a normal model for the sampling distribution of means. 
As we have done before, we now convert sample means to z-scores and use a standard normal curve to find 
probabilities and identify unusual sample means. 
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Normal Model Simulation Useful Again 

Recall the standard normal model simulation we first used in Probability and Probability Distribution. It was 
our tool for converting between intervals of z-scores and probabilities. 

Click here to open this simulation in its own window. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=516 

Example 

Surprising Heights for Individual Basketball Players 

Suppose we have a population of adult male basketball players and we know their heights: the 

mean height is μ = 190 cm and the standard deviation of their heights is σ = 7.2 cm. The heights are 

normally distributed, which is often the case with body measurements. 

Would it be surprising to find a randomly chosen player from this population with a height of 195 

cm? 

We can answer this question by computing the probability that a randomly chosen player from this 

population has height greater than 195 cm. To carry out the analysis, let’s use X to denote the 

height of a randomly chosen individual from this population. Since heights are normally distributed, 

we can convert heights to z-scores and use our simulation to find the probability P(X > 195). 

1. Convert the interval X > 195 to an interval of z-scores.Recall that the z-score of an X-value is 

the number of standard deviations that value is away from the mean. The formula is 

So the z-score of X = 195 is 
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That means that the interval of X-values “X > 195” corresponds to the interval of Z-values “Z 

> 0.69.” 

2. Convert the interval Z > 0.69 to a probability statement. We use the simulation (or some 

sort of technology) for this step. Below is a picture of the simulation with the settings for 

this problem. We moved one flag out of the way and the other flag to the position Z = 0.69. 

For a “greater than” probability, we want the area to the right of Z = 0.69. 

So we have found that P(X > 195) = P(Z > 0.69) = 0.2451. 

Conclusion: This probability is not very low (almost 25%). We conclude that it would be not be 

surprising to find a randomly chosen individual from this population with a height of 195 cm. 
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Example 

Surprising Heights for Samples of Basketball Players 

As before, suppose the heights of individual players are normally distributed with μ = 190 cm and σ 

= 7.2 cm. 

Would it be surprising to find a randomly chosen team of 25 players with a mean height of 195 cm? 

We compute the probability that a random sample of 25 players has a mean height of 195 cm or 

more. We have to look at the distribution of all sample means for samples of size 25. Here’s what 

we know about this sampling distribution: 

• The distribution of sample means is normal, even though our sample size is less than 30, 

because we know the distribution of individual heights is normal. If the individual heights 

were not normally distributed, we would need a larger sample size before using a normal 

model for the sampling distribution. 

• The mean of the sampling distribution is 195 cm, the same as the mean of the individual 

heights. 

• The standard deviation of the sampling distribution is 

= 7.2/5 = 1.44 

Now we can answer this question by computing the probability that a randomly chosen sample of 

25 players from this population has mean height greater than 195 cm. To carry out the analysis, let’s 

use  to denote the mean height of a random sample of 25 players from this population. Because 

mean heights are normally distributed, we can convert mean heights to z-scores and use our 

simulation to find the probability P(  >195). 

1. Convert the interval  > 195 to an interval of z-scores. Note that the z-score is the 

number of standard errors the sample mean is from µ. So the z-score calculation for the 

sampling distribution has mean μ = 190 and standard deviation 

is 

So the z-score of = 195 is 
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 = 3.47 

And the interval of -values “ > 195” corresponds to the interval of Z-values “Z > 3.47.” 

2. Convert the interval Z > 3.47 to a probability statement. Again, we use the 

simulation as we did in the previous example. Move the left-hand flag out of the way and 

the right-hand flag to Z = 3.47. For a “greater than” probability, we want the area to the right 

of Z = 3.47.

So we have found that 

P(  >195) = P(Z > 3.47) = 0.0003 

Conclusion: This probability is very low (much, much less than 1%). We conclude that it would be 

very surprising to find a random sample of 25 players from this population with a mean height of 

195 cm. 

It’s interesting to notice that the height cutoff we used in these two examples is the same (195 cm). 

When considering the individual, we concluded that finding a randomly chosen individual with 

height of 195 cm would not be surprising. However, when we considered the team, we concluded 

that it would be very surprising to find a random sample of 25 players with a mean height of 195 

cm. This makes sense because as sample size grows, variability shrinks (here we considered a 

sample of size 1 versus a sample of size 25). 
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Click here to open the normal simulation in a separate window to answer the following questions. 

Try It 

The annual salary of teachers in a certain state X has a mean of μ = $54,000 and standard deviation 

of σ = $5,000. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=516#h5p-186 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=516#h5p-187 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=516#h5p-188 

What Have We Learned Here? 

We need to be careful before using the normal model to find probabilities associated with sample means. 

• If the individual values are normally distributed, then the sampling distribution of means will be normal 
for any sample size. In this case, we can use the normal model to compute probabilities without 
worrying about the sample size. 

• On the other hand, if the individual values are not normally distributed, then we have to make sure the 
sample size is large enough before concluding that the sampling distribution of means is approximately 
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normal. The general rule is that the sample size should be more than 30 in order for us to feel confident 
that the sampling distribution of means is approximately normal (but it really depends on the shape of 
the distribution of individual values). 

Note: The logic of inference in this module is familiar. We make a claim about a population mean. We use 
a random sample to test our claim. We determine whether it is probable that random samples have means as 
extreme as the actual sample. If this is very unlikely, then we conclude this sample probably could not have 
come from this population and that the claim about the population mean is probably false. We used logic like 
this in Modules 7, 8, and 9 in the context of proportions. In this module, we further develop this idea in the 
context of means. 

Let’s Summarize 

• Many questions regarding quantitative variables require us to say something about the mean of a large 
population. It is often necessary to compute statistics from a random sample and use them to make an 
estimate or an inference about the population mean. 

• We need to be able to compute the probability that the mean of a random sample falls in a given range. 
This probability allows us to draw an inference about the population parameter. To compute this 
probability, we need to understand the distribution of all sample means. 

• Let’s say we have a quantitative data set from a population with mean µ and standard deviation σ. The 
model for the theoretical sampling distribution of means of all random samples of size n has the 
following properties: 

◦ The mean of the sampling distribution of means is µ. 
◦ The standard deviation of the sampling distribution of means is . 

▪ Notice that as n grows, the standard deviation of the sampling distribution of means shrinks. 
It means that larger samples give more accurate estimates of population means. 

• The central limit theorem states that for large enough sample sizes, the sampling distribution of means is 
approximately normal, even if the population is not normal. 

◦ If a variable has a skewed distribution for individuals in the population, a larger sample size is 
needed to ensure that the sampling distribution has a normal shape. 

◦ The general rule is that if n is more than 30, the sampling distribution of means will be 
approximately normal. However, if the population is already normal, then any sample size will 
produce a normal sampling distribution. 

• The mechanics of finding a probability associated with a range of sample means usually proceeds as 
follows. 

◦ Convert a sample mean  into a z-score: . 
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◦ Use technology to find a probability associated with a given range of z-scores. 
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INTRODUCTION TO ESTIMATING A 
POPULATION MEAN 

What you’ll learn to do: Construct and interpret a 
confidence interval to estimate a population mean when 
conditions are met. 

In this section we will learn to construct a confidence 
interval to estimate a population mean when conditions 
are met and interpret the confidence interval in context. 
We will then interpret the meaning of a confidence level 
associated with a confidence interval. This can be used 
with analyzing SAT scores and how they vary from state 
to state. We will also learn to adjust the margin of error by 
making changes to the confidence level or sample size. 
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ESTIMATING A POPULATION MEAN (1 OF 3) 

Learning outcomes 

• Construct a confidence interval to estimate a population mean when conditions are met. 

Interpret the confidence interval in context. 

• Interpret the meaning of a confidence level associated with a confidence interval. 

In “Estimating a Population Mean,” we focus on how to use a sample mean to estimate a population mean. 
This is the type of thinking we did in Modules 7 and 8 when we used a sample proportion to estimate a 
population proportion. Let’s take a moment to review what we learned in the modules Linking Probability to 
Statistical Inference and Inference for One Proportion, and then we’ll see how it relates to the current module. 

• In Linking Probability to Statistical Inference, we noted that random samples vary, so we expect to see 
variability in sample proportions. In the section “Distribution of Sample Means” in that module, we 
made the same observations about sample means. In both cases, a normal model is a good fit for the 
sampling distribution when appropriate conditions are met. 

• We also noted in that module that a sample proportion is an estimate for the population proportion. We 
do not expect the sample proportion to equal the population proportion, so there is some error. The 
error is due to random chance. Likewise, a sample mean is an estimate for the population mean, but 
there will be some error due to random chance. 

  |  892



Comment 

Recall that, in Inference for One Proportion, we adjusted the standard error by replacing p with the sample 
proportion. Doing so made sense because the goal of the confidence interval is to estimate p. So the margin of 
error in the confidence interval formula changed. Here is the adjusted formula. 

This adjustment changed the normality conditions. We use this adjusted confidence interval to estimate p 
when the successes and failures in the actual sample are at least 10. 

We will eventually have to adjust the standard error for the sampling distribution of sample means, too. 
It makes sense because in many situations we will not know the population standard deviation, σ. This 
adjustment is more complicated than the adjustment to standard error for sample proportions, so before we 
do it, let’s practice finding the confidence interval for µ assuming we know σ. 

Assuming we know σ is realistic when a lot of previous research has been done. For example, when we are 
estimating height, weight, or scores on a standardized test, previous research gives us reliable values for σ. 
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Example 

Estimating Mean SAT Math Score 

The SAT is the most widely used college admission exam. (Most community colleges do not require 

students to take this exam.) The mean SAT math score varies by state and by year, so the value of µ 

depends on the state and the year. But let’s assume that the shape and spread of the distribution 

of individual SAT math scores in each state is the same each year. More specifically, assume that 

individual SAT math scores consistently have a normal distribution with a standard deviation of 

100. 

An educational researcher wants to estimate the mean SAT math score (μ) for his state this year. 

The researcher chooses a random sample of 650 exams in his state. The average score is 475 (so = 

475). Estimate the mean SAT math score in this state for this year. 

We answer this question by computing and interpreting a confidence interval. 

Checking conditions: 

From our work in “Distribution of Sample Means,” we know that a normal model is a good fit for 

the distribution of sample means from random samples if one of two conditions is met: 

• The population of individual values is normal (in which case the sample size is not important). 

• If we do not know if the population of individual values is normal, then we must have a large 

sample size (more than 30). 

Because we assume that the distribution of individual SAT math scores is normal in this example, a 

normal model is also a good fit for the distribution of sample means. Even if the population 

distribution had not been normal, the sample size is large enough that the normal distribution 

would still apply to the sample means. So we can use the confidence interval formula given above. 

Finding the margin of error: 

Keep in mind that the sample mean, , is only a single-value estimate for the population mean, μ. 

Because it comes from a random sample, we expect there to be some error in the estimate. But 

how much error should we expect? 

We know that the sample distribution of means is approximately normal because conditions are 

met. Recall that in a normal model, 95% of the values fall within 2 standard deviations of the mean, 

so we use 2 standard errors for our margin of error. This was part of the empirical rule from the 

module Probability and Probability Distribution. 
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standard error is 

margin of error is 2(3.9)  7.8 

 

Finding the confidence interval: 

We are 95% confident that  falls within 7.8 points of μ. This also means that we are 95% 

confident that μ falls within 7.8 points of . So we construct a 95% confidence interval from this 

sample mean by adding and subtracting 7.8 points. The 95% confidence interval is shown. 

 margin of error 

 (standard error) 

475±7.8 

(467.2,484.8) 

Conclusion: 

We are 95% confident that the mean SAT math score in this state this year is between 467.2 and 

484.8. Recall from our previous work that being 95% confident means this method, in the long run, 

captures the true population mean (μ) about 95% of the time. 

Summary 

If we want to estimate µ, a population mean, we want to calculate a confidence interval. The 95% confidence 
interval is: 

We can use this formula only if a normal model is a good fit for the sampling distribution of sample means. 
If the sample size is large (n > 30), we can use a normal model. If the sample size is not greater than 30, then we 
can use a normal model only if the variable is normally distributed in the population. As always, we must have 
a random sample. If the sample is not random, we cannot use it to estimate µ. 

We say we are 95% confident that this interval contains µ, which means that in the long run, 95% of these 
confidence intervals contain µ. 
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Try It 

Constructing a Confidence Interval for Pregnancy Length 

Is smoking during pregnancy associated with premature births? To investigate this question, 

researchers selected a random sample of 114 pregnant women who were smokers. The average 

pregnancy length for this sample of smokers was 260 days. From a large body of research, it is 

known that length of human pregnancy has a standard deviation of 16 days. The researchers 

assume that smoking does not affect the variability in pregnancy length. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=520#h5p-189 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=520#h5p-190 

Comment 

In our work with confidence intervals for estimating a population mean, µ, we require the population standard 
deviation, σ, to be known. In practice, σ usually is unknown. However, in some situations, especially when a 
lot of research has been done on the quantitative variable whose mean we are estimating (such as IQ, height, 
weight, scores on standardized tests), it is reasonable to assume that σ is known. On the next page, we learn how 
to proceed when σ is unknown. 
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ESTIMATING A POPULATION MEAN (2 OF 3) 

Learning outcomes 

• Construct a confidence interval to estimate a population mean when conditions are met. 

Interpret the confidence interval in context. 

• Interpret the meaning of a confidence level associated with a confidence interval. 

• Adjust the margin of error by making changes to the confidence level or sample size. 

On the previous page, we used a confidence interval to estimate the population mean, µ. For this confidence 
interval, we had to supply a guess for the population standard deviation, σ, based on previous studies. It may 
have occurred to you that if we do not know µ, it is unlikely that we know σ. So we now take a different 
approach. We estimate σ using the sample standard deviation, s. 

This is the same type of adjustment we used in Inference for One Proportion when we had to adjust our 

model of the sampling distribution. The standard error of the sampling distribution is . (If we 

knew p, then we wouldn’t need to build a confidence interval.) We approximate p by the sample proportion, 
. 

Our process for adjusting the confidence interval for estimating µ is similar. We use the sample standard 
deviation, s, to estimate σ. The standard error for the sampling distribution  becomes s

/\sqrt{n}[/latex&lt;/em&gt;&lt;i&gt;].&lt;/i&gt; So we adjust the margin of error in the confidence interval 
formula, but this adjustment is not as straightforward as our work with proportions.&lt;/p&gt; &lt;p 
class=&quot;indent&quot;&gt;This estimate for σ introduces more uncertainty in the process. The problem is 
worse with smaller samples because the sample standard deviations vary more. For small samples, 
&lt;em&gt;s&lt;/em&gt; is a worse approximation for σ. Unfortunately, this approximation makes the normal 
model a bad fit and inappropriate for determining critical values. We instead use what is called a 
&lt;strong&gt;t-model &lt;/strong&gt;for this purpose.&lt;/p&gt; &lt;h2&gt;Introduction to the T-
Model&lt;/h2&gt; &lt;p class=&quot;nonindent&quot;&gt;Here is the formula for the T-score. We also include 
the &lt;em&gt;z&lt;/em&gt;-score for comparison. The formulas are very similar.&lt;/p&gt; &lt;p 
style=&quot;text-align: center&quot;&gt;[latex]\mathit{Z}=\frac{\bar{x}-
\mu}{\frac{\sigma}{\sqrt{n}}}\mathit{T}=\frac{\bar{x}-\mu}{\frac{\textit{s}}{\sqrt{n}}} 

The distribution of z-scores is the standard normal curve, with mean of 0 and standard deviation of 1. The 
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distribution of T-scores depends on the sample size, n. There is a different T-model for every n. So the T-model 
is a family of curves. 

Instead of referring to n to specify which T-model to use, we refer to the degrees of freedom, or df for 
short. For Topics 10.2 and 10.3, the number of degrees of freedom is 1 less than the sample size. That is, df = n 
– 1. 

In summary, a normal model is defined by its mean and standard deviation. A T-model is a family of curves 
defined by the degrees of freedom. 

Let’s take a look at a few T-model curves (for various df) to see how they compare to the normal model. 

We can see from the picture that as df grows, the T-model gets closer to the standard normal model. 
Similarities between T-model and standard normal model: 

• Symmetric with a central peak, bell-shaped. 
• Centered at 0. 
• The larger the degrees of freedom, the closer the T-model is to the standard normal model. 

Difference between T-model and standard normal model: 

• The T-model has more spread than the standard normal model. 
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• The T-model has more probability in the tails and less in the center than the standard normal model. We 
can see this in the fatter tails and lower central peak of the T-model. 

When is a T-model a good fit for the sampling distribution of sample means? 
Check these conditions before using the T-model: 

• Use the T-model if σ (the population standard deviation) is unknown. If σ is known, then use the 
normal model instead of the T-model. 

• Use the T-model if variable values are normally distributed in the population. If this is not true, then 
make sure the sample size is large (more than 30). 

Example 

Cable Strength 

A group of engineers developed a new design for a steel cable. They need to estimate the amount 

of weight the cable can hold. The weight limit will be reported on cable packaging. 

The engineers take a random sample of 45 cables and apply weights to each of them until they 

break. The mean breaking weight for the 45 cables is = 768.2 lb. The standard deviation of the 

breaking weight for the sample is s = 15.1 lb. 

What should the engineers report as the mean amount of weight held by this type of cable? 

Let’s use these sample statistics to construct a 95% confidence interval for the mean breaking 

weight of this type of cable. 

Checking conditions: 

Since we do not know the standard deviation of breaking weights of all of the cables (the 

population parameter σ), we use the sample standard deviation (s) as an approximation for σ. Since 

we don’t know σ, we must use the T-distribution to model the sampling distribution of means. 

Is the T-model a good fit for the sampling distribution? 

Yes, because the conditions are met: 

• σ is unknown. 

• The sample size is large enough. 

Finding the standard error: 
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As usual, we start by estimating the standard error. This estimate comes from the formula . 

However, since we don’t know σ, we use s = 15.1 as an approximation for σ. So our estimate for the 

standard error of all sample means is . 

Finding the margin of error: 

To find the margin of error, we need to find the critical T-value that corresponds to a 95% 

confidence level. This is just like the critical Z-value when we built confidence intervals for 

proportions, except that it comes from the T-model instead of the standard normal model. 

We will use technology to find the critical T-value. There are a number of tools for doing this. Some 

books will also give you the option to use printed tables of values. Here we will use a simulation 

that gives the T-model based on degrees of freedom. We want the T-values that cut off the central 

95% of the area under the curve. It will look as follows. 

Using the simulation, we see that the critical T-value for a 95% confidence interval with 44 degrees 

of freedom is Tc = 2.015, which means our margin of error for this confidence interval is 

Estimated standard error is 

Margin of error is Tc 

Note: For 95% confidence, the empirical rule approximates the critical Z-value as 2. The empirical 

rule is based on the normal model. Using the T-model for df = 44, the critical T-value (2.015) is very 

close to 2. This makes sense because for larger df, the T-model is very close to the standard normal 
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model. We will see that the critical T-value differs more from the critical Z-value when the sample 

sizes are small. 

Finding the confidence interval: 

We have all the pieces to build the confidence interval. In our example, the confidence interval is 

 margin of error 

768.2±4.53 

(763.7, 772.7) 

Conclusion: 

We are 95% confident that the mean breaking weight for all cables of this type is between 763.7 lb 

and 772.7 lb. 

Confidence intervals at the 95% confidence level are common in practice. But 95% is not the only confidence 
level we use. Particularly in situations that involve safety issues, such as the previous example, people often 
prefer to estimate population means with 99% confidence intervals. Let’s do some exploration with technology 
to see how changes in the confidence level affect the confidence interval. 
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Try It 

How Much Alcohol Do College Students Drink? 

According to the website www.collegedrinkingprevention.gov, “About 25 percent of college 
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students report academic consequences of their drinking including missing class, falling behind, 

doing poorly on exams or papers, and receiving lower grades overall.” A statistics student is curious 

about drinking habits of students at his college. He wants to estimate the mean number of 

alcoholic drinks consumed each week by students at his college. He plans to use a 90% confidence 

interval. He surveys a random sample of 71 students. The sample mean is 3.93 alcoholic drinks per 

week. The sample standard deviation is 3.78 drinks. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=523#h5p-191 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=523#h5p-192 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=523#h5p-193 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=523#h5p-194 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=523#h5p-195 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=523#h5p-196 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=523#h5p-197 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=523#h5p-198 

905  |  

https://pressbooks.cuny.edu/conceptsinstatistics/?p=523#h5p-195
https://pressbooks.cuny.edu/conceptsinstatistics/?p=523#h5p-196
https://pressbooks.cuny.edu/conceptsinstatistics/?p=523#h5p-197
https://pressbooks.cuny.edu/conceptsinstatistics/?p=523#h5p-198


CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 

  |  906

http://oli.cmu.edu/
https://creativecommons.org/licenses/by/4.0


ESTIMATING A POPULATION MEAN (3 OF 3) 
907  |  ESTIMATING A POPULATION MEAN (3 OF 3)



ESTIMATING A POPULATION MEAN (3 OF 3) 

Learning outcomes 

• Construct a confidence interval to estimate a population mean when conditions are met. 

Interpret the confidence interval in context. 

• Adjust the margin of error by making changes to the confidence level or sample size. 

Structure of a Confidence Interval 

Let’s take a closer look at the parts of the confidence interval. Remember that this is a confidence interval for a 
population mean. We use this formula when the population standard deviation is unknown. 

Let’s remind ourselves how the confidence interval formula relates to the graph of the confidence interval 
on a number line. 

The confidence interval shown below is a 95% confidence interval for a sample of size n = 25 (so df = 24), 
with sample mean = 9 and sample standard deviation of s = 3. The critical T-value for a 95% confidence 
interval with a df = 24 is 2.064. 

Standard error is 
Martin of error (ME) is 

The confidence interval is 9 ± 1.24. We are 95% confident that µ lies between 7.76 and 10.24. 
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Note: 

• The sample mean (9 in this example) is at the center of the interval. 
• The margin of error (labeled ME and equal to 1.24 in this example) is the distance that the interval 

extends to the left and right of the sample mean. 
• The interval width is the length of the entire interval on the number line. The interval width is always 

twice the margin of error. 

Let’s quickly review how the precision of a confidence interval relates to the margin of error: 

• An interval gives a more precise estimate when the interval is narrower. In other words, the margin of 
error is smaller. 

• An interval gives a less precise estimate when the interval is wider. In other words, the margin of error is 
larger. 

We know that a higher confidence level gives a larger margin of error, so confidence level is also related to 
precision. 

• Increasing the confidence in our estimate makes the confidence interval wider and therefore less precise. 
• Decreasing the confidence in our estimate makes the confidence interval narrower, and therefore more 

precise. 

Confidence interval estimates are useful when they have the right balance of confidence and precision. 
Typical confidence levels used in practice are 90%, 95%, and 99%. When we need to be really sure about our 
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estimates, such as in life-and-death situations, we choose a 99% confidence level. So if nothing else changes, we 
settle for less precise estimates when we need a high level of confidence. 

In our discussion about the structure of confidence intervals, we said choosing a higher level of confidence 
means that we sacrifice some precision. This is true only if nothing else changes. But there is one way to keep 
a high level of confidence without sacrificing precision: Increase the sample size. We investigate the impact of 
sample size on the confidence interval next. 

Example 

Cable Strength Revisited 

Recall the engineers who are trying to determine the breaking weight of a cable. In that example, 

we had a random sample of 45 cables with a mean breaking weight of 768.2 lb and a standard 

deviation of 15.1 lb. From that sample we computed a 95% confidence interval for the mean 

breaking weight of all such cables. Here are the important numbers we found from that calculation 

on the previous page: 

  |  910



standard error:  ≈ 2.25 

critical T-value: Tc = 2.015 (we found this using the simulation) 

margin of error: Tc · s/  =2.015(2.25)=4.53 

confidence internal: 768.2±4.53 or (763.67, 772.73) 

Now let’s increase the sample size and investigate the impact on the confidence interval. We 

calculate the confidence interval for a larger sample of 101 cables (n = 101). 

Sample size affects our calculations in two ways: 

• The sample size (n) appears in our formula for standard error. 

• The critical T-value depends on degrees of freedom, and df = n – 1. 

Finding the standard error: 

We approximate the standard error of all sample means as follows: 

 = 15.1/  ≈ 1.50 

Note: The standard error is smaller when the sample size is larger. We were expecting this because 

we know there is less variability in sample means when the samples are larger. 

Finding the critical T-value: 

To find the critical T-value, we use the simulation. We set the df to 100 and the central probability 

to 0.95. We see that the critical T-value is 1.984. 

Note: Increasing the sample size decreased the critical T-value (the T-value went from 2.015 to 
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1.984 when we increased the sample size). You might also notice that both of the critical T-values 

for 95% confidence are larger than the critical Z-value for 95% confidence, which is approximately 

1.96. This makes sense because the T-models are wider than the the standard normal curve. 

Finding the margin of error. 

Here is the margin of error calculation: 

Tc · s/  = 1.984(1.50) = 2.98 

Finding the confidence interval. 

Here is the confidence interval calculation: 

 ± margin of error 

 ± Tc · 

768.2±2.98 

(765.22, 771.18) 

Side-by-side comparison: 

Let’s take a look at these two intervals to study the effects of changing the sample size. 

Increasing the sample size had the following effects on the confidence interval estimate: 

• Decreased standard error 

• Decreased critical T-value 

• Decreased margin of error and hence decreased the interval width 

• Improved interval precision 

Comment 

In the real world, increasing the sample size is not always possible. Sometimes collecting a sample is very 
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expensive. If the study has budgetary constraints, which is usually the case, selecting a larger sample may be too 
expensive. 

Try It 

Appropriate Conclusions 

For each of the following situations, decide if it is valid or invalid to use a confidence interval to 

estimate the population mean. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=529#h5p-210 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=529#h5p-211 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=529#h5p-212 

Let’s Summarize 

• A confidence interval approximates a population mean by giving us a range of values that likely contains 
the population mean, μ. The general form of the confidence interval is  ± margin of error. 

• To say that we are “95% confident that the population mean falls within our confidence interval” really 
means that “about 95% of all confidence intervals computed in this way will capture the true population 
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mean.” 
• We can use a sample mean to build a confidence interval as an estimate for μ. There are two possible 

cases: 
◦ Suppose the population standard deviation, σ, is known. We check the conditions for use of the 

normal model. Conditions: The variable must be normally distributed in the population, or the 
sample size is large enough (n &gt; 30). In this case, the confidence interval has the form 

. 
◦ Suppose the population standard deviation, σ, is not known. Then we use the sample standard 

deviation, s, as an approximation for σ. We check the conditions for use of the T-model. 
Conditions are the same: The variable must be normally distributed in the population, or the 
sample size is large enough (n &gt; 30). In this case, the confidence interval has the form 

. When using the T-model to find the critical value, we need to select an 
appropriate number of degrees of freedom (df). The number of degrees of freedom is 1 less than 
the sample size (df = n – 1). 

• As we have seen with other confidence intervals, the width of a confidence interval is twice the margin of 
error. The smaller the margin of error, the more narrow the confidence interval and the more precise the 
estimate of µ. 
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INTRODUCTION TO HYPOTHESIS TEST FOR 
A POPULATION MEAN 

What you’ll learn to do: Conduct and interpret results from 
a hypothesis test about a population mean. 

In this section we will learn to conduct a hypothesis test about a population mean and state a conclusion in 
context under appropriate conditions. Matched pairs design is when there is a “before and after” situation 
i.e. two quantitative measurements from a single sample of individuals. We will also learn, under appropriate 
conditions, to conduct a hypothesis test about a mean for a matched pairs design and state a conclusion in 
context. We will also interpret the P-value as a conditional probability. 
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HYPOTHESIS TEST FOR A POPULATION 
MEAN (1 OF 5) 

Learning outcomes 

• Recognize when to use a hypothesis test or a confidence interval to draw a conclusion about 

a population mean. 

• Under appropriate conditions, conduct a hypothesis test about a population mean. State a 

conclusion in context. 

Introduction 

In Inference for Means, our focus is on inference when the variable is quantitative, so the parameters and 
statistics are means. In “Estimating a Population Mean,” we learned how to use a sample mean to calculate 
a confidence interval. The confidence interval estimates a population mean. In “Hypothesis Test for a 
Population Mean,” we learn to use a sample mean to test a hypothesis about a population mean. 

We did hypothesis tests in earlier modules. In Inference for One Proportion, each claim involved a single 
population proportion. In Inference for Two Proportions, the claim was a statement about a treatment effect or 
a difference in population proportions. In “Hypothesis Test for a Population Mean,” the claims are statements 
about a population mean. But we will see that the steps and the logic of the hypothesis test are the same. Before 
we get into the details, let’s practice identifying research questions and studies that involve a population mean. 

Try It 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=533#h5p-213 

Example 

Cell Phone Data 

Cell phones and cell phone plans can be very expensive, so consumers must think carefully when 

choosing a cell phone and service. This decision is as much about choosing the right cellular 

company as it is about choosing the right phone. Many people use the data/Internet capabilities of 

a phone as much as, if not more than, they use voice capability. The data service of a cell company 

is therefore an important factor in this decision. In the following example, a student named Melanie 

from Los Angeles applies what she learned in her statistics class to help her make a decision about 

buying a data plan for her smartphone. 

Melanie read an advertisement from the Cell Phone Giants (CPG, for short, and yes, we’re using a 

fictitious company name) that she thinks is too good to be true. The CPG ad states that customers 

in Los Angeles get average data download speeds of 4 Mbps. With this speed, the ad claims, it 

takes, on average, only 12 seconds to download a typical 3-minute song from iTunes. 

Only 12 seconds on average to download a 3-minute song from iTunes! Melanie has her doubts 

about this claim, so she gathers data to test it. She asks a friend who uses the CPG plan to 

download a song, and it takes 13 seconds to download a 3-minute song using the CPG network. 

Melanie decides to gather more evidence. She uses her friend’s phone and times the download of 

the same 3-minute song from various locations in Los Angeles. She gets a mean download time of 

13.5 seconds for her sample of downloads. 

What can Melanie conclude? Her sample has a mean download time that is greater than 12 

seconds. Isn’t this evidence that the CPG claim is wrong? Why is a hypothesis test necessary? Isn’t 

the conclusion clear? 
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Let’s review the reason Melanie needs to do a hypothesis test before she can reach a conclusion. 

Why should Melanie do a hypothesis test? 

Melanie’s data (with a mean of 13.5 seconds) suggest that the average download time overall is 

greater than the 12 seconds claimed by the manufacturer. But wait. We know that samples will 

vary. If the CPG claim is correct, we don’t expect all samples to have a mean download time exactly 

equal to 12 seconds. There will be variability in the sample means. But if the overall average 

download time is 12 seconds, how much variability in sample means do we expect to see? We need 

to determine if the difference Melanie observed can be explained by chance. 

We have to judge Melanie’s data against random samples that come from a population with a 

mean of 12. For this reason, we must do a simulation or use a mathematical model to examine the 

sampling distribution of sample means. Based on the sampling distribution, we ask, Is it likely that 

the samples will have mean download times that are greater than 13.5 seconds if the overall mean 

is 12 seconds? This probability (the P-value) determines whether Melanie’s data provides convincing 

evidence against the CPG claim. 

Now let’s do the hypothesis test. 

Step 1: Determine the hypotheses. 

As always, hypotheses come from the research question. The null hypothesis is a hypothesis that 

the population mean equals a specific value. The alternative hypothesis reflects our claim. The 

alternative hypothesis says the population mean is “greater than” or “less than” or “not equal to” 

the value we assume is true in the null hypothesis. 

Melanie’s hypotheses: 

H0: It takes 12 seconds on average to download Melanie’s song from iTunes with the CPG 

network in Los Angeles. 

Ha: It takes more than 12 seconds on average to download Melanie’s song from iTunes using 

the CPG network in Los Angeles. 

We can write the hypotheses in terms of µ. When we do so, we should always define µ. Here μ = 

the average number of seconds it takes to download Melanie’s song on the CPG network in Los 

Angeles. 

H0: μ = 12 

Ha: μ > 12 

Step 2: Collect the data. 
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To conduct a hypothesis test, Melanie knows she has to use a t-model of the sampling distribution. 

She thinks ahead to the conditions required, which helps her collect a useful sample. 

Recall the conditions for use of a t-model. 

• There is no reason to think the download times are normally distributed (they might be, but 

this isn’t something Melanie could know for sure). So the sample has to be large (more than 

30). 

• The sample has to be random. Melanie decides to use one phone but randomly selects days, 

times, and locations in Los Angeles. 

Melanie collects a random sample of 45 downloads by using her friend’s phone to download her 

song from iTunes according to the randomly selected days, times, and locations. 

Melanie’s sample of size 45 downloads has an average download time of 13.5 seconds. The 

standard deviation for the sample is 3.2 seconds. Now Melanie needs to determine how unlikely 

this data is if CPG’s claim is actually true. 

Step 3: Assess the evidence. 

Assuming the average download time for Melanie’s song is really 12 seconds, what is the probability 

that 45 random downloads of this song will have a mean of 13.5 seconds or more? 

This is a question about sampling variability. Melanie must determine the standard error. She 

knows the standard error of random sample means is . Since she has no way of knowing 

the population standard deviation, σ, Melanie uses the sample standard deviation, s = 3.2, as an 

approximation. Therefore, Melanie approximates the standard error of all sample means (n = 45) to 

be 

Now she can assess how far away her sample is from the claimed mean in terms of standard errors. 

That is, she can compute the t-score of her sample mean. 

T = =3.14 

The sample mean for Melanie’s random sample is approximately 3.14 standard errors above the 

overall mean of 12. We know from previous experience that a sample mean this far above µ is very 

unlikely. With a t-score this large, the P-value is very small. We use a simulation of the t-model for 

44 degrees of freedom to verify this. 
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We want the probability that the sample mean is greater than 13.5. This corresponds to the 

probability that T is greater than 3.14. The P-value is 0.0015. 

Step 4: State a conclusion. 

Here the logic is the same as for other hypothesis tests. We use the P-value to make a decision. 

The P-value helps us determine if the difference we see between the data and the hypothesized 

value of µ is statistically significant or due to chance. One of two outcomes can occur: 

• One possibility is that results similar to the actual sample are extremely unlikely. This means 

the data does not fit with results from random samples selected from the population 

described by the null hypothesis. In this case, it is unlikely that the data came from this 

population. The probability as measured by the P-value is small, so we view this as strong 

evidence against the null hypothesis. We reject the null hypothesis in favor of the alternative 

hypothesis. 

• The other possibility is that results similar to the actual sample are fairly likely (not unusual). 

This means the data fits with typical results from random samples selected from the 

population described by the null hypothesis. The probability as measured by the P-value is 

large. In this case, we do not have evidence against the null hypothesis, so we cannot reject 

it in favor of the alternative hypothesis. 

Melanie’s data is very unlikely if µ = 12. The probability is essentially zero (P-value = 0.0015). This 
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means we will rarely see sample means greater than 13.5 if µ = 12. So we reject the null and accept 

the alternative hypothesis. In other words, this sample provides strong evidence that CPG has 

overstated the speed of its data download capability. 

The following activities give you an opportunity to practice parts of the hypothesis testing process for a 
population mean. Later you will have the opportunity to practice the hypothesis test from start to finish. 

Try It 

For the following scenarios, give the null and alternative hypotheses and state in words what µ 

represents in your hypotheses. A good definition of µ describes both the variable and the 

population. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=533#h5p-214 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=533#h5p-215 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=533#h5p-216 
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Comment 

In the previous example, Melanie did not state a significance level for her test. If she had, the logic is the same 
as we used for hypothesis tests in Modules 8 and 9. To come to a conclusion about H0, we compare the P-value 
to the significance level α. 

• If P ≤ α, we reject H0. We conclude there is significant evidence in favor of Ha. 
• If P > α, we fail to reject H0. We conclude the sample does not provide significant evidence in favor of 

Ha. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=533#h5p-217 

Use this simulation when needed to answer questions below. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=533#h5p-218 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=533#h5p-219 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=533#h5p-220 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 
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HYPOTHESIS TEST FOR A POPULATION 
MEAN (2 OF 5) 

Learning outcomes 

• Under appropriate conditions, conduct a hypothesis test about a population mean. State a 

conclusion in context. 

More on Checking Conditions for a T-Test 

In practice, you will often see the use of a t-test with small samples. Technically, we can use the t-test with small 
samples only if we know the variable has a normal distribution in the population. But this is hard to verify. 
In addition, no variable has a perfect normal distribution. So what does the requirement that the “variable be 
normally distributed in the population” really mean? 

We call a confidence interval or a hypothesis test robust if the confidence level or P-value does not change 
very much when the conditions for use of the procedure are not met. 

T-procedures are robust when the variable is not normally distributed in the population, as long as the 
distribution is not heavily skewed. But how can we determine if the distribution of the variable in the 
population is heavily skewed? In this introductory course, we examine the distribution of the variable in the 
sample and make an educated guess about what is going on in the population. 

Now we investigate this question: Can we tell from a sample whether the variable is normally distributed in 
the population? 
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Example 

Variable Skewed in the Population 

Let’s start with a skewed distribution in the population. Can we tell that this distribution is not 

normal by looking at random samples? 

The following figure shows the monthly payment on first home mortgages for 5,000 people, as 

reported in the 2000 U.S. Census. Think of this as data from the population of a small town. From 

this population, we randomly selected 20 people. We did this three times. Notice that for each 

random sample, the shape of the distribution of the monthly payments in the sample is skewed to 

the right, just like the distribution in the population. In 2 of the 3 samples, we also see outliers, just 

as we see in the population. So by looking at the sample, we can get a pretty good sense that the 

variable is not normally distributed in the population. 

In this example, the sample size is less than 30. We can use the t-test only if the variable is normally 

distributed in the population. The shape of the distribution in any one of these samples suggests 

that the variable has a skewed distribution in the population, so we would not conduct a t-test 

with any of these samples. 
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Example 

Variable Normal in the Population 

Now we look at a variable that has an approximately normal distribution in the population. Can we 

tell that this distribution is approximately normal by looking at random samples? 

The following graphs show the heights (in centimeters) of 5,000 women. Think of this as data from 

the population of a small town. From this population, we randomly selected 20 women. We did this 

three times. Notice that for each random sample, the shape of the distribution of the heights in the 

sample is not skewed, and there are no outliers. By looking at the sample, we can get a pretty good 

sense that the variable is not skewed in the population, which suggests that the variable may be 

somewhat normally distributed in the population. 

In this example, the sample size is less than 30. We can only use the t-test if the variable is normally 

distributed in the population. The shape of the distribution in any one of these samples indicates 

that the variable does not have a skewed distribution in the population, suggesting that the 

distribution in the population is somewhat normal. Since the t-procedures are robust, we would 

conduct a t-test with any of these samples. 
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What’s the Main Point? 

We previously stated the conditions for use of the t-procedures as follows: 
(1) If the variable is normally distributed in the population, you can always use the t-procedures. 
(2) If the variable is not normally distributed in the population (or you can’t determine this factor), the 

sample size must be greater than 30 for safe use of the t-procedures. 
We are now loosening these conditions somewhat because the t-procedures are robust. 
(3) If the sample is small (n ≤ 30), plot the data. If the distribution in the sample is not heavily skewed and 

does not have outliers, then we assume the variable is somewhat normally distributed in the population, so we 
use t-procedures. 

Comment 

If we use a t-procedure for a small sample (n ≤ 30), it is good practice to include a disclaimer with the 
conclusion. We might say something like, “On the basis of the sample, we are assuming that the variable is 
distributed without strong skew or extreme outliers in the population. The conclusion from this test is valid 
only if this assumption is true.” 

Try It 

Each histogram in the following questions represents a random sample. We do not know if the 

variable has a normal distribution in the population, but we want to run a t-test to test a claim 

about the population mean. For each histogram, choose the option that best describes how to 

proceed with the hypothesis test. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=537#h5p-221 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=537#h5p-222 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=537#h5p-251 

Comment 

Recall that the sample mean and standard deviation are not resistant to outliers. An outlier in the data can 
make the mean and standard deviation poor measures of center and spread. So why can we use data from large 
samples even if the data has an outlier? Well, if the sample is large enough, the distribution of sample means will 
still be approximately normal. And the t-model will be a good fit when we estimate the standard error of the 
sample means using the sample standard deviation. This is the important point. The P-value and confidence 
level come from a model of the sampling distribution, not from a model of the population’s distribution. 
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HYPOTHESIS TEST FOR A POPULATION 
MEAN (3 OF 5) 

Learning outcomes 

• Under appropriate conditions, conduct a hypothesis test about a mean for a matched pairs 

design. State a conclusion in context. 

Another common use of the t-test for a population mean is in “before and after” situations. In this situation, 
we have two quantitative measurements from a single sample of individuals. This is an example of a matched-
pairs design. 

Example 

Drinking and Driving 

The Centers for Disease Control and Prevention (CDC) website cites studies from the National 

Highway Traffic Safety Administration to support this statement: “Alcohol use slows reaction time 

and impairs judgment and coordination, which are all skills needed to drive a car safely. The more 

alcohol consumed, the greater the impairment.” All states in the United States have adopted a 

blood alcohol concentration of 0.08% (80 mg/dL) as the legal limit for operating a motor vehicle. 

The CDC website continues, “Note: Legal limits do not define a level below which it is safe to 

operate a vehicle or engage in some other activity. Impairment due to alcohol use begins to occur at 

levels well below the legal limit.” 

It is this last statement that may be surprising to drivers. Interviews with drunk drivers who were 

involved in accidents reveal that drunk drivers do not realize how drunk they are. “I only had one or 

two drinks – I am okay to drive” is a common sentiment. Suppose a college conducts a study to call 

attention to this issue. Researchers use a random sample of 20 college students to examine the 
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effect of drinking two beers on reaction times. They use a driving simulator to measure each 

student’s reaction time before and after drinking two beers. The reaction time is the time it takes 

the student to hit the brakes in the simulator when an obstacle appears in the road. 

In this situation, we have two quantitative measurements for each student. To measure the effect 

of the two beers, we subtract the two reaction times to create one measurement of “change” or 

“effect.” This controls the effects of individual characteristics that could influence reaction time, 

such as driving experience or natural quickness. 

Here is a partial list of the data. We define the difference as “before minus after.” If the “after” 

reaction time is longer, then the difference is negative. A negative value means the reaction time is 

slower after drinking. 

Note: It is common to define the difference in measurements as “before minus after.” But we could 

also define the difference the other way around as “after minus before.” In this definition, if the 
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“after” reaction time is longer, then the difference is positive, so a slower reaction time after 

drinking corresponds to a positive value. This makes less intuitive sense to us. We want “negative” 

to mean “drinking has a negative effect,” so we used the other definition, “before minus after.” 

Step 1: Determine the hypotheses. 

The null hypothesis is a claim of “no change” or “no effect.” The alternative hypothesis reflects the 

claim. 

H0: Drinking two beers has no effect on reaction time. 

Ha: Drinking two beers slows reaction time. 

If drinking two beers has no effect on reaction time, then the mean of the differences in reaction 

times (before minus after) will be zero. If drinking two beers slows reaction time, then the mean of 

the differences in reaction times (before minus after) will be negative. So we can rewrite our 

hypotheses as follows. 

H0: μ = 0 

Ha: μ < 0 

where µ is the mean of the difference in reaction time (before minus after) for all students at this 

college after drinking two beers. 

Suppose researchers set a significance level of 5%. 

Note: if we defined the difference in reverse order as “after minus before,” then a positive 

difference corresponds to a slower reaction time. This changes the alternative hypothesis to Ha: µ > 

0. This will not affect the P-value or our conclusion. You just have to make sure the alternative 

hypothesis says what you want it to say given the way you define the difference. 

Note: In some textbooks and other statistical materials, you will see the “mean of the difference” 

written as μd. 

Step 2: Collect the data. 

Here is the (made-up) data from this sample of 20 college students. 
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The mean of the differences (before minus after) is approximately −0.46 seconds, and the standard 

deviation is approximately 0.87 seconds. 

Step 3: Assess the evidence. 

Check the Criteria for Use of a T-Model 

The sample size is only 20, and we do not know if these differences would be normally distributed 

in general when comparing these two treatments in the population of all college students. We 

therefore do not meet the conditions for use of a t-model. Some researchers would stop here and 

not complete the hypothesis test. Others would check the shape of the distribution of differences 

in the sample. If the sample is approximately normal (or at least not heavily skewed), then they 

view this as a hopeful indication that the distribution in the population will also be approximately 

normal, and they continue with the hypothesis test, adding a disclaimer to the conclusion. 

Here is a histogram of the differences in the sample. 

937  |  



The data is not heavily skewed, so we are willing to proceed with the t-test. 

Compute the Test Statistic 

estimatedstandarderror = 

T=

 

Find the P-value. 

We use the simulation with the t-model for 19 degrees of freedom (df = n − 1 = 20 − 1 = 19). The P-

value is approximately 0.015. 

Step 4: State a conclusion. 

The P-value (0.015) is less than the significance level (0.05), so we reject the null and accept the 

alternative hypothesis that µ < 0. 

This study suggests that reactions times when driving are significantly slower after drinking two 

beers for students at this college. (P = 0.015). 

It is good practice to include a disclaimer with this conclusion because the sample is small. We 
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might add the following to our conclusion if we were publicly presenting these results: “The sample 

was too small to formally meet the requirements for a t-test. On the basis of the data, we are 

assuming that the difference in reaction times would be normally distributed in general when 

comparing these two treatments in the population of all college students. The conclusion from this 

test is valid only if this assumption is true.” 

Comment 

From this study, can we generalize to a larger population of “all college students” or “all drivers”? Technically, 
such a generalization requires that the sample be randomly selected from the more general population. Is 
this type of random sampling done in practice? Not always. The matched pairs design controls for individual 
differences that would otherwise confound such a generalization. This is one of the reasons that researchers 
run hypothesis tests with data gathered by groups like the National Highway Traffic Safety Administration, 
even when participants are not randomly selected. But ideally we should select samples randomly from the 
population of interest. 

Can we make a cause-and-effect conclusion from this study? 
We should be cautious about a cause-and-effect conclusion here because there is no random assignment. 

We take measurements from every student in both the treatment and the control setting without randomizing 
the treatment order. Every participant did the driving test sober, then drank two beers and did the driving test 
again. Technically, we need a more sophisticated study design that uses random assignment in order to make 
cause-and-effect conclusions. For example, we could randomly assign the treatment order for each student by 
flipping a coin, assigning some students do the first driving test while sober and others do the first driving test 
after drinking two beers. Then everyone comes back on another day to complete the part of the experiment 
that he or she had not done. 

The following activities give you an opportunity to practice parts of the hypothesis testing process. In each 
of these activities, the study is a matched-pairs design, so the population mean represents a mean of differences 
in paired measurements. Later you will have the opportunity to practice the hypothesis test from start to finish. 
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Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=541#h5p-252 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=541#h5p-253 

CC licensed content, Shared previously 

• Concepts in Statistics. Provided by: Open Learning Initiative. Located at: http://oli.cmu.edu. 
License: CC BY: Attribution 
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HYPOTHESIS TEST FOR A POPULATION 
MEAN (4 OF 5) 

Learning outcomes 

• Under appropriate conditions, conduct a hypothesis test about a population mean. State a 

conclusion in context. 

• Under appropriate conditions, conduct a hypothesis test about a mean for a matched pairs 

design. State a conclusion in context. 

This page contains four opportunities for practicing the hypothesis test for a population mean from start to 
finish. The last two activities guide you through this hypothesis test using data and your statistical software 
package. 

How Much Are College Students Sleeping? 

(not including naps in class!) 
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Scenario: Americans average 6.9 hours of sleep on weeknights, according to a report released in 2011 by 
the National Sleep Foundation. A student in a statistics class at Los Medanos College wondered if the average 
amount of sleep on weeknights is different for LMC students. She collected data from a survey of 43 randomly 
selected students at LMC. Respondents averaged 7.12 hours of sleep a night with a standard deviation of 1.45 
hours. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=543#h5p-254 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=543#h5p-255 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=543#h5p-256 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=543#h5p-257 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=543#h5p-284 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=543#h5p-285 

Use this simulation when needed to answer questions above. 

Texting and Concentration 

Scenario: An instructor at Los Medanos College conducted an experiment with her statistics class to study the 
effect of texting on concentration. She created two audio clips in which she read two different lists of words. 
The treatment required students to send a short text message to a friend while listening to one of the audio 
clips. In the control setting, students simply listened to one of the audio clips. Everyone wore earphones and 
listened to the audio clips in the same order. But a coin flip determined who was and was not texting each time. 
After each listening session, students had 2 minutes to write down all the words they could remember. Twenty 
three students participated in the experiment. 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=543#h5p-286 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=543#h5p-287 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=543#h5p-288 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=543#h5p-289 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=543#h5p-290 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=543#h5p-291 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=543#h5p-292 

Use this simulation when needed to answer questions above. 
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HYPOTHESIS TEST FOR A POPULATION 
MEAN (5 OF 5) 

Learning outcomes 

• Interpret the P-value as a conditional probability. 

We finish our discussion of the hypothesis test for a population mean with a review of the meaning of the P-
value, along with a review of type I and type II errors. 

Review of the Meaning of the P-value 

At this point, we assume you know how to use a P-value to make a decision in a hypothesis test. The logic is 
always the same. If we pick a level of significance (α), then we compare the P-value to α. 

• If the P-value ≤ α, reject the null hypothesis. The data supports the alternative hypothesis. 

• If the P-value > α, do not reject the null hypothesis. The data is not strong enough to support the 
alternative hypothesis. 

In fact, we find that we treat these as “rules” and apply them without thinking about what the P-value 
means. So let’s pause here and review the meaning of the P-value, since it is the connection between probability 
and decision-making in inference. 
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Example 

Birth Weights in a Town 

Let’s return to the familiar context of birth weights for babies in a town. Suppose that babies in the 

town had a mean birth weight of 3,500 grams in 2010. This year, a random sample of 50 babies has 

a mean weight of about 3,400 grams with a standard deviation of about 500 grams. Here is the 

distribution of birth weights in the sample. 

Obviously, this sample weighs less on average than the population of babies in the town in 2010. A 

decrease in the town’s mean birth weight could indicate a decline in overall health of the town. But 

does this sample give strong evidence that the town’s mean birth weight is less than 3,500 grams 

this year? 

We now know how to answer this question with a hypothesis test. Let’s use a significance level of 

5%. 

Let μ = mean birth weight in the town this year. The null hypothesis says there is “no change from 

2010.” 

H0: μ < 3,500 

Ha: μ = 3,500 

Since the sample is large, we can conduct the T-test (without worrying about the shape of the 

distribution of birth weights for individual babies.) 

T =  ≈  –1.41 

Statistical software tells us the P-value is 0.082 = 8.2%. Since the P-value is greater than 0.05, we 

fail to reject the null hypothesis. 

Our conclusion: This sample does not suggest that the mean birth weight this year is less than 

3,500 grams (P-value = 0.082). The sample from this year has a mean of 3,400 grams, which is 100 
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grams lower than the mean in 2010. But this difference is not statistically significant. It can be 

explained by the chance fluctuation we expect to see in random sampling. 

What Does the P-Value of 0.082 Tell Us? 

A simulation can help us understand the P-value. In a simulation, we assume that the population mean is 3,500 
grams. This is the null hypothesis. We assume the null hypothesis is true and select 1,000 random samples from 
a population with a mean of 3,500 grams. The mean of the sampling distribution is at 3,500 (as predicted by 
the null hypothesis.) We see this in the simulated sampling distribution. 

In the simulation, we can see that about 8.6% of the samples have a mean less than 3,400. Since probability 
is the relative frequency of an event in the long run, we say there is an 8.6% chance that a random sample of 
500 babies has a mean less than 3,400 if the population mean is 3,500. We can see that the corresponding area 
to the left of T = −1.41 in the T-model (with df = 49) also gives us a good estimate of the probability. This area 
is the P-value, about 8.2%. 

If we generalize this statement, we say the P-value is the probability that random samples have results more 
extreme than the data if the null hypothesis is true. (By more extreme, we mean further from value of the 
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parameter, in the direction of the alternative hypothesis.) We can also describe the P-value in terms of T-scores. 
The P-value is the probability that the test statistic from a random sample has a value more extreme than that 
associated with the data if the null hypothesis is true. 

Try It 

What Does a P-Value Mean? 

Do women who smoke run the risk of shorter pregnancy and premature birth? The mean 

pregnancy length is 266 days. We test the following hypotheses. 

H0: μ = 266 

Ha: μ < 266 

Suppose a random sample of 40 women who smoke during their pregnancy have a mean 

pregnancy length of 260 days with a standard deviation of 21 days. The P-value is 0.04. 

What probability does the P-value of 0.04 describe? Label each of the following interpretations as 

valid or invalid. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=547#h5p-312 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=547#h5p-313 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=547#h5p-314 

Review of Type I and Type II Errors 

We know that statistical inference is based on probability, so there is always some chance of making a wrong 
decision. Recall that there are two types of wrong decisions that can be made in hypothesis testing. When we 
reject a null hypothesis that is true, we commit a type I error. When we fail to reject a null hypothesis that is 
false, we commit a type II error. 

The following table summarizes the logic behind type I and type II errors. 

It is possible to have some influence over the likelihoods of committing these errors. But decreasing the 
chance of a type I error increases the chance of a type II error. We have to decide which error is more serious 
for a given situation. Sometimes a type I error is more serious. Other times a type II error is more serious. 
Sometimes neither is serious. 

Recall that if the null hypothesis is true, the probability of committing a type I error is α. Why is this? Well, 
when we choose a level of significance (α), we are choosing a benchmark for rejecting the null hypothesis. If the 
null hypothesis is true, then the probability that we will reject a true null hypothesis is α. So the smaller α is, the 
smaller the probability of a type I error. 

It is more complicated to calculate the probability of a type II error. The best way to reduce the probability 
of a type II error is to increase the sample size. But once the sample size is set, larger values of α will decrease the 
probability of a type II error (while increasing the probability of a type I error). 

General Guidelines for Choosing a Level of Significance 

• If the consequences of a type I error are more serious, choose a small level of significance (α). 
• If the consequences of a type II error are more serious, choose a larger level of significance (α). But 
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remember that the level of significance is the probability of committing a type I error. 
• In general, we pick the largest level of significance that we can tolerate as the chance of a type I error. 

Try It 

Let’s return to the investigation of the impact of smoking on pregnancy length. 

Recap of the hypothesis test: The mean human pregnancy length is 266 days. We test the 

following hypotheses. 

H0: μ = 266 

Ha: μ < 266 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=547#h5p-315 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=547#h5p-316 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=547#h5p-317 

Let’s Summarize 

In this “Hypothesis Test for a Population Mean,” we looked at the four steps of a hypothesis test as they relate 
to a claim about a population mean. 
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Step 1: Determine the hypotheses. 

• The hypotheses are claims about the population mean, µ. 
• The null hypothesis is a hypothesis that the mean equals a specific value, µ0. 
• The alternative hypothesis is the competing claim that µ is less than, greater than, or not equal to theμ0. 

◦ When Ha is μ < μ0 or μ >μ0, the test is a one-tailed test. 
◦ When Ha is μ ≠ μ0, the test is a two-tailed test. 

Step 2: Collect the data. 

Since the hypothesis test is based on probability, random selection or assignment is essential in data production. 
Additionally, we need to check whether the t-model is a good fit for the sampling distribution of sample 
means. To use the t-model, the variable must be normally distributed in the population or the sample size must 
be more than 30. In practice, it is often impossible to verify that the variable is normally distributed in the 
population. If this is the case and the sample size is not more than 30, researchers often use the t-model if the 
sample is not strongly skewed and does not have outliers. 

Step 3: Assess the evidence. 

• If a t-model is appropriate, determine the t-test statistic for the data’s sample mean. 

• Use the test statistic, together with the alternative hypothesis, to determine the P-value. 

• The P-value is the probability of finding a random sample with a mean at least as extreme as our sample 
mean, assuming that the null hypothesis is true. 

• As in all hypothesis tests, if the alternative hypothesis is greater than, the P-value is the area to the right of 
the test statistic. If the alternative hypothesis is less than, the P-value is the area to the left of the test 
statistic. If the alternative hypothesis is not equal to, the P-value is equal to double the tail area beyond 
the test statistic. 
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Step 4: Give the conclusion. 

The logic of the hypothesis test is always the same. To state a conclusion about H0, we compare the P-value to 
the significance level, α. 

• If P ≤ α, we reject H0. We conclude there is significant evidence in favor of Ha. 
• If P > α, we fail to reject H0. We conclude the sample does not provide significant evidence in favor of 

Ha. 

• We write the conclusion in the context of the research question. Our conclusion is usually a statement 
about the alternative hypothesis (we accept Ha or fail to accept Ha) and should include the P-value. 

Other Hypothesis Testing Notes 

• Remember that the P-value is the probability of seeing a sample mean at least as extreme as the one from 
the data if the null hypothesis is true. The probability is about the random sample; it is not a “chance” 
statement about the null or alternative hypothesis. 

• Hypothesis tests are based on probability, so there is always a chance that the data has led us to make an 
error. 

◦ If our test results in rejecting a null hypothesis that is actually true, then it is called a type I error. 
◦ If our test results in failing to reject a null hypothesis that is actually false, then it is called a type II 

error. 
◦ If rejecting a null hypothesis would be very expensive, controversial, or dangerous, then we really 

want to avoid a type I error. In this case, we would set a strict significance level (a small value of α, 
such as 0.01). 

• Finally, remember the phrase “garbage in, garbage out.” If the data collection methods are poor, then the 
results of a hypothesis test are meaningless. 
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INTRODUCTION TO INFERENCE FOR A 
DIFFERENCE IN TWO POPULATION MEANS 

What you’ll learn to do: Conduct a hypothesis test or 
construct a confidence interval to investigate a difference 
between two population means. Interpret results in 
context. 

In the last section we learned about a hypothesis test for a population mean. We will build on this and learn to 
conduct a hypothesis test about a difference between two population means and state a conclusion in context 
under appropriate conditions. We will then construct a confidence interval to estimate a difference in two 
population means (when conditions are met) and interpret the confidence interval in context. 
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INFERENCE FOR A DIFFERENCE IN TWO 
POPULATION MEANS 

Learning outcomes 

• Under appropriate conditions, conduct a hypothesis test about a difference between two 

population means. State a conclusion in context. 

Introduction 

In this section, we learn to make inferences about a difference between two population means. Our work here 
parallels our work in inference about a difference between two population proportions. Recall the following 
slogan from the previous module, Inference for Two Proportions. 

It’s Not about the Values – It’s about How They Are Related! 
So just as in that module, the value of the population means is not the focus of inference. Instead, we 

want to develop tools for determining the relationship between two unknown population means. We select 
independent random samples from two different populations and find the difference in the sample means. We 
use the sample difference either to conduct a hypothesis test about the difference in population means or to 
estimate the difference using a confidence interval. 

Example 

Beer and Reaction Time 

Suppose researchers study the effect of low levels of alcohol on drivers’ reaction time. Consider the 

following two study designs. 

Design 1: 
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Researchers select a random sample of 19 drivers and assign them randomly to one of two 

treatments. The 9 drivers in the treatment group each drink two beers. The 10 drivers assigned to 

the control group do not drink beer. The response variable is reaction time (measured in seconds). 

The reaction time is the time it takes the driver to hit the brakes in a driving simulator when an 

obstacle appears in the road. The random assignment guarantees, at least in theory, that the two 

groups are independent. 

In this design, we calculate a mean and standard deviation in response time for each group. We use 

the difference in the sample means to either test a hypothesis about, or calculate a confidence 

interval for, a difference in two population means or two treatments. 

Design 2: 

Researchers randomly select 8 drivers. The experiment is a matched-pairs design with two 

measurements taken for each driver. The researchers measure the reaction times in the driving 

simulator before and then after the consumption of two beers. 

In this design, we first calculate the differences in the two measurements for each driver. Then we 

  |  960



calculate the mean and standard deviation of this one list of numbers. We use the single sample 

mean to either test a hypothesis about, or calculate a confidence interval for, a single population or 

a treatment effect. This is one of the types of inference we did in the previous section, “Hypothesis 

Test for a Population Mean.” 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=551#h5p-318 

Try It 

Identify the situations that involve inference about a difference between two population means by 

choosing “valid” or “invalid.” 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=551#h5p-319 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=551#h5p-320 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=551#h5p-321 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=551#h5p-322 
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HYPOTHESIS TEST FOR A DIFFERENCE IN 
TWO POPULATION MEANS (1 OF 2) 

Learning outcomes 

• Under appropriate conditions, conduct a hypothesis test about a difference between two 

population means. State a conclusion in context. 

Using the Hypothesis Test for a Difference in Two 
Population Means 

The general steps of this hypothesis test are the same as always. As expected, the details of the conditions for use 
of the test and the test statistic are unique to this test (but similar in many ways to what we have seen before.) 

Step 1: Determine the hypotheses. 

The hypotheses for a difference in two population means are similar to those for a difference in two population 
proportions. The null hypothesis, H0, is again a statement of “no effect” or “no difference.” 

H0: μ1 – μ2 = 0, which is the same as H0: μ1 = μ2 

The alternative hypothesis, Ha, can be any one of the following. 

Ha: μ1 – μ2 < 0, which is the same as Ha: μ1 < μ2 

Ha: μ1 – μ2 > 0, which is the same as Ha: μ1 > μ2 

Ha: μ1 – μ2 ≠ 0, which is the same as Ha: μ1 ≠ μ2 
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Step 2: Collect the data. 

As usual, how we collect the data determines whether we can use it in the inference procedure. We have our 
usual two requirements for data collection. 

• Samples must be random to remove or minimize bias. 
• Samples must be representative of the populations in question. 

We use this hypothesis test when the data meets the following conditions. 

• The two random samples are independent. 
• The variable is normally distributed in both populations. If this variable is not known, samples of more 

than 30 will have a difference in sample means that can be modeled adequately by the t-distribution. As 
we discussed in “Hypothesis Test for a Population Mean,” t-procedures are robust even when the 
variable is not normally distributed in the population. If checking normality in the populations is 
impossible, then we look at the distribution in the samples. If a histogram or dotplot of the data does 
not show extreme skew or outliers, we take it as a sign that the variable is not heavily skewed in the 
populations, and we use the inference procedure. (Note: This is the same condition we used for the one-
sample t-test in “Hypothesis Test for a Population Mean.”) 

Step 3: Assess the evidence. 

If the conditions are met, then we calculate the t-test statistic. The t-test statistic has a familiar form. 

Since the null hypothesis assumes there is no difference in the population means, the expression (μ1 – μ2) is 
always zero. 

As we learned in “Estimating a Population Mean,” the t-distribution depends on the degrees of freedom 
(df ). In the one-sample and matched-pair cases df = n – 1. For the two-sample t-test, determining the correct 
df is based on a complicated formula that we do not cover in this course. We will either give the df or use 
technology to find the df. With the t-test statistic and the degrees of freedom, we can use the appropriate t-
model to find the P-value, just as we did in “Hypothesis Test for a Population Mean.” We can even use the same 
simulation. 
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Step 4: State a conclusion. 

To state a conclusion, we follow what we have done with other hypothesis tests. We compare our P-value to a 
stated level of significance. 

• If the P-value ≤ α, we reject the null hypothesis in favor of the alternative hypothesis. 
• If the P-value > α, we fail to reject the null hypothesis. We do not have enough evidence to support the 

alternative hypothesis. 

As always, we state our conclusion in context, usually by referring to the alternative hypothesis. 

Example 

“Context and Calories” 

Does the company you keep impact what you eat? This example comes from an article titled 

“Impact of Group Settings and Gender on Meals Purchased by College Students” (ALLEN-

O’DONNELL, M., T. C. NOWAK, K. A. SNYDER, AND M. D. COTTINGHAM, JOURNAL OF APPLIED SOCIAL 

PSYCHOLOGY 49(9), 2011, ONLINELIBRARY.WILEY.COM/DOI/10.1111/J.1559-1816.2011.00804.X/FULL). In this 

study, researchers examined this issue in the context of gender-related theories in their field. For 

our purposes, we look at this research more narrowly. 

Step 1: Stating the hypotheses. 

In the article, the authors make the following hypothesis. “The attempt to appear feminine will be 

empirically demonstrated by the purchase of fewer calories by women in mixed-gender groups 

than by women in same-gender groups.” We translate this into a simpler and narrower research 

question: Do women purchase fewer calories when they eat with men compared to when they eat 

with women? 

Here the two populations are “women eating with women” (population 1) and “women eating with 

men” (population 2). The variable is the calories in the meal. We test the following hypotheses at 

the 5% level of significance. 

The null hypothesis is always H0: μ1 – μ2 = 0, which is the same as H0: μ1 = μ2. 

The alternative hypothesis Ha: μ1 – μ2 > 0, which is the same as Ha: μ1 > μ2. 

Here μ1 represents the mean number of calories ordered by women when they were eating with 
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other women, and μ2 represents the mean number of calories ordered by women when they were 

eating with men. 

Note: It does not matter which population we label as 1 or 2, but once we decide, we have to stay 

consistent throughout the hypothesis test. Since we expect the number of calories to be greater for 

the women eating with other women, the difference is positive if “women eating with women” is 

population 1. If you prefer to work with positive numbers, choose the group with the larger 

expected mean as population 1. This is a good general tip. 

Step 2: Collect Data. 

As usual, there are two major things to keep in mind when considering the collection of data. 

• Samples need to be representative of the population in question. 

• Samples need to be random in order to remove or minimize bias. 

Representative Samples? 

The researchers state their hypothesis in terms of “women.” We did the same. But the researchers 

gathered data by watching people eat at the HUB Rock Café II on the campus of Indiana University 

of Pennsylvania during the Spring semester of 2006. Almost all of the women in the data set were 

white undergraduates between the ages of 18 and 24, so there are some definite limitations on the 

scope of this study. These limitations will affect our conclusion (and the specific definition of the 

population means in our hypotheses.) 

Random Samples? 

The observations were collected on February 13, 2006, through February 22, 2006, between 11 a.m. 

and 7 p.m. We can see that the researchers included both lunch and dinner. They also made 

observations on all days of the week to ensure that weekly customer patterns did not confound 

their findings. The authors state that “since the time period for observations and the place where 

[they] observed students were limited, the sample was a convenience sample.” Despite these 

limitations, the researchers conducted inference procedures with the data, and the results were 

published in a reputable journal. We will also conduct inference with this data, but we also include 

a discussion of the limitations of the study with our conclusion. The authors did this, also. 

Do the data meet the conditions for use of a t-test? 

The researchers reported the following sample statistics. 

• In a sample of 45 women dining with other women, the average number of calories ordered 

was 850, and the standard deviation was 252. 

• In a sample of 27 women dining with men, the average number of calories ordered was 719, 
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and the standard deviation was 322. 

One of the samples has fewer than 30 women. We need to make sure the distribution of calories in 

this sample is not heavily skewed and has no outliers, but we do not have access to a spreadsheet 

of the actual data. Since the researchers conducted a t-test with this data, we will assume that the 

conditions are met. This includes the assumption that the samples are independent. 

Step 3: Assess the evidence. 

As noted previously, the researchers reported the following sample statistics. 

• In a sample of 45 women dining with other women, the average number of calories ordered 

was 850, and the standard deviation was 252. 

• In a sample of 27 women dining with men, the average number of calories ordered was 719, 

and the standard deviation was 322. 

To compute the t-test statistic, make sure sample 1 corresponds to population 1. Here our 

population 1 is “women eating with other women.” So x1 = 850, s1 = 252, n1 =45, and so on. 

Using technology, we determined that the degrees of freedom are about 45 for this data. To find 

the P-value, we use our familiar simulation of the t-distribution. Since the alternative hypothesis is 

a “greater than” statement, we look for the area to the right of T = 1.81. The P-value is 0.0385. 
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Step 4: State a conclusion. 

Generic Conclusion 

The hypotheses for this test are H0: μ1 – μ2 = 0 and Ha: μ1 – μ2 > 0. Since the P-value is less than the 

significance level (0.0385 < 0.05), we reject H0 and accept Ha. 

Conclusion in context 

At Indiana University of Pennsylvania, the mean number of calories ordered by undergraduate 

women eating with other women is greater than the mean number of calories ordered by 

undergraduate women eating with men (P-value = 0.0385). 

Comment about Conclusions 

In the conclusion above, we did not generalize the findings to all women. Since the samples included only 
undergraduate women at one university, we included this information in our conclusion. But our conclusion 
is a cautious statement of the findings. The authors see the results more broadly in the context of theories in the 
field of social psychology. In the context of these theories, they write, “Our findings support the assertion that 
meal size is a tool for influencing the impressions of others. For traditional-age, predominantly White college 
women, diminished meal size appears to be an attempt to assert femininity in groups that include men.” This 
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viewpoint is echoed in the following summary of the study for the general public on National Public Radio 
(npr.org). 

Both men and women appear to choose larger portions when they eat with women, and both men and 
women choose smaller portions when they eat in the company of men, according to new research published in 
the Journal of Applied Social Psychology. The study, conducted among a sample of 127 college students, 
suggests that both men and women are influenced by unconscious scripts about how to behave in each other’s 
company. And these scripts change the way men and women eat when they eat together and when they eat 
apart. 

Should we be concerned that the findings of this study are generalized in this way? Perhaps. But the authors 
of the article address this concern by including the following disclaimer with their findings: “While the results 
of our research are suggestive, they should be replicated with larger, representative samples. Studies should 
be done not only with primarily White, middle-class college students, but also with students who differ in 
terms of race/ethnicity, social class, age, sexual orientation, and so forth.” This is an example of good statistical 
practice. It is often very difficult to select truly random samples from the populations of interest. Researchers 
therefore discuss the limitations of their sampling design when they discuss their conclusions. 

In the following activities, you will have the opportunity to practice parts of the hypothesis test for a 
difference in two population means. On the next page, the activities focus on the entire process and also 
incorporate technology. 

Try It 

National Health and Nutrition Survey 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=553#h5p-323 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=553#h5p-324 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=553#h5p-325 
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HYPOTHESIS TEST FOR A DIFFERENCE IN 
TWO POPULATION MEANS (2 OF 2) 

Learning outcomes 

• Under appropriate conditions, conduct a hypothesis test about a difference between two 

population means. State a conclusion in context. 

On this page, we practice the hypothesis test for a difference in two population means (also called the two-
sample t-test). 

Example 

Using Technology to Run the Hypothesis Test 

When dating someone, what matters more to you: looks or personality? This question was the 

focus of a community college student’s class project for an introductory statistics course. She 

devised a 25-point scale. An answer of 1 means “personality matters most and looks don’t matter at 

all.” A score of 25 means “looks matter most and personality does not matter at all.” Her hypothesis 

is that the mean scores for males and females will differ, but she does not have an opinion about 

which population will have a higher mean score. 

Here are her hypotheses. 

H0: μ1 – μ2 = 0 

Ha: μ1 – μ2 ≠ 0 

We can also write the hypotheses as follows. 

H0: μ1 = μ2 
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Ha: μ1 ≠ μ2 

She chose a random sample of 10 classes from the schedule at Los Medanos College and distributed 

surveys in those classes. Survey respondents totaled 239 students: 150 females and 85 males. 

We used her data to run a hypothesis test for a difference in two population means. 

Here is the relevant output for our example: 

According to R, the P-value of this test is so small that it is essentially 0. How do we interpret this? 

A P-value that is practically 0 means that it would be almost impossible to get data like that 

observed (or even more extreme) had the null hypothesis been true. 

More specifically to our example, if there were no differences between females and males with 

respect to value they place on looks versus personality, it would be almost impossible (probability 

approximately 0) to get data where the difference between the sample means of females and 

males is -2.6 (that difference is 10.73 – 13.33 = -2.6) or higher. 

Try It 

Identify the P-value 

Remember to use the printout of the results in the above example to answer the questions below. 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=555#h5p-350 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=555#h5p-351 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=555#h5p-352 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=555#h5p-353 
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ESTIMATING THE DIFFERENCE IN TWO 
POPULATION MEANS 

Learning outcomes 

• Construct a confidence interval to estimate a difference in two population means (when 

conditions are met). Interpret the confidence interval in context. 

Confidence Interval to Estimate μ1 − μ2 

In a hypothesis test, when the sample evidence leads us to reject the null hypothesis, we conclude that the 
population means differ or that one is larger than the other. An obvious next question is how much larger? 
In practice, when the sample mean difference is statistically significant, our next step is often to calculate a 
confidence interval to estimate the size of the population mean difference. 

The confidence interval gives us a range of reasonable values for the difference in population means μ1 − 
μ2. We call this the two-sample T-interval or the confidence interval to estimate a difference in two population 
means. The form of the confidence interval is similar to others we have seen. 

(samplestatistic)±(marginoferror) 
(samplestatistic)±(criticalT−value)(standarderror) 

Sample Statistic 

Since we’re estimating the difference between two population means, the sample statistic is the difference 
between the means of the two independent samples: . 

Critical T-Value 

The critical T-value comes from the T-model, just as it did in “Estimating a Population Mean.” Again, this 
value depends on the degrees of freedom (df). For two-sample T-test or two-sample T-intervals, the df value is 
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based on a complicated formula that we do not cover in this course. We either give the df or use technology to 
find the df. 

Standard Error 

The estimated standard error for the two-sample T-interval is the same formula we used for the two-sample T-
test. (As usual, s1 and s2 denote the sample standard deviations, and n1 and n2 denote the sample sizes.) 

Putting all this together gives us the following formula for the two-sample T-interval. 

Conditions for Use 

The conditions for using this two-sample T-interval are the same as the conditions for using the two-sample 
T-test. 

• The two random samples are independent and representative. 
• The variable is normally distributed in both populations. If it is not known, samples of more than 30 will 

have a difference in sample means that can be modeled adequately by the T-distribution. As we discussed 
in “Hypothesis Test for a Population Mean,” T-procedures are robust even when the variable is not 
normally distributed in the population. If checking normality in the populations is impossible, then we 
look at the distribution in the samples. If a histogram or dotplot of the data does not show extreme skew 
or outliers, we take it as a sign that the variable is not heavily skewed in the populations, and we use the 
inference procedure. 

Example 

Confidence Interval for the “Calories and Context” Study 

In the preceding few pages, we worked through a two-sample T-test for the “calories and context” 
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example. In this example, we use the sample data to find a two-sample T-interval for μ1 − μ2 at the 

95% confidence level. 

Recap of the Situation 

• Population 1: Let μ1 be the mean number of calories purchased by women eating with other 

women. 

• Population 2: Let μ2 be the mean number of calories purchased by women eating with men. 

Sample Statistics 

Size (n) Mean( ) SD (s) 

Sample 1 45 850 252 

Sample 2 27 719 322 

Standard Error 

We found that the standard error of the sampling distribution of all sample differences is 

approximately 72.47. 

 ≈ 72.47 

Critical T-value 

For these two independent samples, df = 45. We find the critical T-value using the same simulation 

we used in “Estimating a Population Mean.” 
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Reading from the simulation, we see that the critical T-value is 1.6790. 

Confidence Interval 

We can now put all this together to compute the confidence interval: 

( )±Tc ⋅ SE = (850−719) ± (1.6790)(72.47) ≈ 131±122 

Expressing this as an interval gives us: 

(9, 253) 

Interpretation 

We are 95% confident that the true value of μ1 − μ2 is between 9 and 253 calories. We can be more 

specific about the populations. We are 95% confident that at Indiana University of Pennsylvania, 

undergraduate women eating with women order between 9.32 and 252.68 more calories than 

undergraduate women eating with men. 

In this next activity, we focus on interpreting confidence intervals and evaluating a statistics project 
conducted by students in an introductory statistics course. 

Try It 

Improving Children’s Math Skills 

Students in an introductory statistics course at Los Medanos College designed an experiment to 

study the impact of subliminal messages on improving children’s math skills. The students were 

inspired by a similar study at City University of New York, as described in David Moore’s textbook 

The Basic Practice of Statistics (4TH ED., W. H. FREEMAN, 2007). The participants were 11 children 

who attended an afterschool tutoring program at a local church. The children ranged in age from 8 

to 11. All received tutoring in arithmetic skills. At the beginning of each tutoring session, the children 

watched a short video with a religious message that ended with a promotional message for the 

church. 

The statistics students added a slide that said, “I work hard and I am good at math.” This slide 

flashed quickly during the promotional message, so quickly that no one was aware of the slide. 

Children who attended the tutoring sessions on Mondays watched the video with the extra slide. 

Children who attended the tutoring sessions on Wednesday watched the video without the extra 
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slide. The experiment lasted 4 weeks. The children took a pretest and posttest in arithmetic. Here 

are some of the results: 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=558#h5p-354 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=558#h5p-355 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=558#h5p-356 

Let’s Summarize 

Hypothesis tests and confidence intervals for two means can answer research questions about two populations 
or two treatments that involve quantitative data. In “Inference for a Difference between Population Means,” 
we focused on studies that produced two independent samples. Previously, in “Hpyothesis Test for a 
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Population Mean,” we looked at matched-pairs studies in which individual data points in one sample are 
naturally paired with the individual data points in the other sample. 

The hypotheses for two population means are similar to those for two population proportions. 
The null hypothesis, H0, is a statement of “no effect” or “no difference.” 

H0: μ1 – μ2 = 0, which is the same as H0: μ1 = μ2 

The alternative hypothesis, Ha, takes one of the following three forms: 

Ha: μ1 – μ2 < 0, which is the same as Ha: μ1 < μ2 

Ha: μ1 – μ2 > 0, which is the same as Ha: μ1 > μ2 

Ha: μ1 – μ2 ≠ 0, which is the same as Ha: μ1 ≠ μ2 

As usual, how we collect the data determines whether we can use it in the inference procedure. We have our 
usual two requirements for data collection. 

• Samples must be random in order to remove or minimize bias. 
• Sample must be representative of the population in question. 

We use the two-sample hypothesis test and confidence interval when the following conditions are met: 

• The two random samples are independent. 
• The variable is normally distributed in both populations. If this variable is not known, samples of more 

than 30 will have a difference in sample means that can be modeled adequately by the t-distribution. As 
we discussed in “Hypothesis Test for a Population Mean,” t-procedures are robust even when the 
variable is not normally distributed in the population. Therefore, if checking normality in the 
populations is impossible, then we look at the distribution in the samples. If a histogram or dotplot of 
the data does not show extreme skew or outliers, we take it as a sign that the variable is not heavily 
skewed in the populations, and we use the inference procedure. 

Formulas: 

The confidence interval for μ1 − μ2 is 

Hypothesis test for H0: μ1 – μ2 = 0 is 

  |  982



We use technology to find the degrees of freedom to determine P-values and critical t-values for confidence 
intervals. (In most problems in this section, we provided the degrees of freedom for you.) 

 
CC licensed content, Shared previously 
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PUTTING IT TOGETHER: INFERENCE FOR 
MEANS 

Let’s Summarize 

The focus of this module, Inference for Means, is inference for a population mean or a difference between two 
populations means. We began this module with a discussion of the sampling distribution of sample means. We 
then developed a probability model based on this sampling distribution. We used the probability model with 
an actual sample mean to test a claim about population mean in a hypothesis test or to estimate a population 
mean with a confidence interval. We then moved to inference for a difference in two population means (or a 
treatment effect.) 

Sampling Distribution of Means 

If we have a quantitative data set from a population with mean µ and standard deviation σ, the model for the 
theoretical sampling distribution of means of all random samples of size n has the following properties: 

• The mean of the sampling distribution of means is µ. 
• The standard deviation of the sampling distribution of means is . 

◦ Notice that as n grows, the standard error of the sampling distribution of means shrinks. That 
means that larger samples give more accurate estimates of a population mean. 

• For large enough sample size, the sampling distribution of means is approximately normal (even if 
population is not normal). This is called the central limit theorem. 

◦ If a variable has a skewed distribution for individuals in the population, a larger sample size is 
needed to ensure that the sampling distribution has a normal shape. 

◦ The general rule is that if n is at least 30, then the sampling distribution of means will be 
approximately normal. However, if the population is already normal, then any sample size will 
produce a normal sampling distribution. 

• We practiced finding a probability associated with a range of sample means, which is similar to finding a 
P-value in hypothesis testing. The process is as follows. 

◦ Convert a sample mean X into a z-score: 

◦ Use technology to find a probability associated with a given range of z-scores. 
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Confidence Intervals 

Form 

A confidence interval approximates a population mean by giving us a range of values that likely contains the 
population mean μ. The general form of the confidence interval is 

x ± marginoferror = ±(criticalvalue) ⋅ (standarderror) 
We covered three different types of confidence intervals: 
One-sample Z-interval: , where σ is the population standard deviation (when it is 

known). 
One-sample T-interval: , where s is the sample standard deviation. 

Two-sample T-interval: , where we use the sample statistics from two 

independent samples. 

T-Model 

When the standard deviation of the population is unknown, which is often the case, we use the T-model to 
find the critical values. When using the T-model to find critical values, we need to select an appropriate number 
of degrees of freedom. 

• In the one-sample case, the number of degrees of freedom is 1 less than the sample size (df = n – 1). 
• In the two-independent-sample case, the degrees of freedom come from a complicated formula, and we 

often use technology to find df. 

Conclusions 

To say we are 95% confident that the population mean falls within our confidence interval really means that 
about 95% of all confidence intervals computed in this way will capture the true population mean. 

Conditions 

The population must be normally distributed, or the sample size must be large enough (larger than 30). In 
the case of the two-sample T-interval, both populations/samples must meet these conditions. In practice, we 
use T-procedures with smaller samples if the distribution of the variable in the sample(s) is not heavily skewed 
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and is without outliers. We take this as an indication that the variable has a fairly normal distribution in the 
population(s). 

Observations about Confidence Interval Structure 

• As we saw with other confidence intervals, the width of a confidence interval is twice the margin of 
error. The smaller the margin of error, the narrower the confidence interval and the more precise the 
estimate of the population parameter. 

• Increasing the confidence level decreases the precision (larger margin of error, so wider interval). 
Decreasing the confidence level increases the precision (smaller margin of error, so narrower interval). 

• Confidence intervals are useful estimates only when they provide a good balance of confidence level and 
precision. In order to increase precision without losing confidence, we must increase the sample size. In 
other words, larger samples provide more precise estimates without sacrificing confidence. 

Hypothesis Testing (Tests for Statistical Significance) 

The process of any hypothesis test consists of four basic steps: 

• Define the hypotheses 
• Collect the data: We need random samples that are representative of the population. For the two-sample 

T-test, the samples must be independent. 
• Assess the evidence: Assessment includes checking appropriate conditions, computing test statistics, and 

finding corresponding P-values. 
• State the conclusion: We compare the P-value to α, decide whether or not to reject H0, then state 

conclusion in context. 

Hypotheses 

• The null hypothesis (H0): The null hypothesis gives the value of the parameter we use to create the 
sampling distribution. In this way, the null hypothesis states what we assume to be true about the 
population. 

• The alternative hypothesis (Ha): The alternative hypothesis usually reflects the claim in the research 
question about the value of the parameter. The alternative hypothesis says the parameter is greater than 
or less than or not equal to the value we assume to be true in the null hypothesis. 

◦ When Ha is μ < μ0 or μ > μ0, the test is called a one-tailed test. 
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▪ For the paired T-test, H0 would look like μ < 0 or μ > 0 in the case of a one-tailed test. 
▪ For the two-sample T-test, H0 would look like μ1 − μ2 < 0 or μ1 − μ2 > 0 in the case of a one-

tailed test. 
◦ When Ha is μ ≠ μ0, the test is called a two-tailed test. 

▪ For the paired T-test, Ha would look like μ ≠ 0 in the case of a two-tailed test. 
▪ For the two-sample T-test, Ha would look like μ1 − μ2 ≠ 0 in the case of a two-tailed test. 

Conditions 

Conditions that must be satisfied in order to carryout T-procedures are as follows: 

• The population is normally distributed, or the sample is large (at least 30). This applies to both 
populations for the two-sample T-test. 

• The samples must be random in order to avoid bias. 
• The samples must be independent in the case of the two-sample T-test. 

Test Statistic 

The test T-statistic is given by 

We’ve learned about three different types of T-tests: 
One-sample T-test: 

Paired T-test: We calculate the differences, then find the mean and standard deviation. 

Two-sample T-test: 

P-values 

The P-value is the probability of finding a random sample with a test statistic at least as extreme as ours, 
assuming that the null hypothesis is true. We find P-values by using the T-distribution. 
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To come to a conclusion about H0, we compare the P-value to the significance level, α. 

• If P ≤ α, we reject H0 and conclude there is significant evidence in favor of Ha. 
• If P > α, we fail to reject H0 and conclude the sample does not provide significant evidence in favor of 

Ha. 

Error Types 

Hypothesis tests are based on random samples, so the conclusions are really statements about probabilities, and 
it is possible for the conclusions to be wrong. 

• If our test results in rejecting a null hypothesis that is actually true, it is called a type I error. 
• If our test results in failing to reject a null hypothesis that is actually false, it is called a type II error. 

You are now ready to practice what you learned in this module by doing a StatTutor exercise. We design 
StatTutor exercises to help you apply what you have learned to a real-life data analysis question. 

Instructions: One of the first few screens in StatTutor contains a link to download the data set for this 
StatTutor exercise. When you click that link, a pop-up window will appear asking if you want to open or 
save the file. Make sure you click “Save,” which allows you to save the file to your hard drive. Then find the 
downloaded file and double-click it to open it if you’re using R, Minitab, Excel, or StatCrunch, or transfer it 
to your calculator if you’re using the TI Calculator. 

Are You Ready for the Checkpoint? 

If you completed all of the exercises in this module, you should be ready for the Checkpoint. To make sure 
that you are ready for the Checkpoint, use the My Response link below to evaluate your understanding of the 
learning outcomes for this module and to submit questions that you may have. 
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WHY IT MATTERS: CHI-SQUARE TESTS 

Why understand the application of chi-square tests using 
categorical variables? 

In this module, Chi-Square Tests, we again focus on inference with categorical variables. We learn three new 
hypothesis tests, two of which are an extension of hypothesis tests about proportions that we learned in the 
modules Inference for One Proportion and Inference for Two Proportions. This module does not focus on 
estimating a parameter, so there is nothing about confidence intervals in this module. 

Here is the Big Picture of Statistics with the new material for Chi-Square Tests highlighted in purple. 
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Following are examples of research questions that procedures in this module can address: 
Goodness-of-Fit Test: Test a claim about the distribution of a categorical variable in a population. 

• During the presidential election of 2008, the Pew Research Center collected survey data that suggested 
that 24% of registered voters were liberal, 38% were moderate, and 38% were conservative. Is the 
distribution of political views different this year? 

• The distribution of blood types for whites in the United States is 45% type O, 41% type A, 10% type B, 
and 4% type AB. Is the distribution of blood types different for Asian Americans? 

Test of Independence: Test a claim about the relationship between two categorical variables in a 
population. 

• For young adults in the United States, is gender related to body image? 
• Is alcohol abuse by New York firefighters dependent on participation in the 9/11 rescue operation? 
• In the United States, is race associated with political views (conservative, moderate, liberal)? 

Test of Homogeneity: Test a claim about the distribution of a categorical variable in several populations. 

• Does the use of steroids in collegiate athletics differ across the three NCAA divisions? 
• Was the distribution of political views (liberal, moderate, conservative) different for the last three 

presidential elections in the United States? 
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Chi-square 
distribution 

INTRODUCTION TO CHI-SQUARE TEST FOR 
ONE-WAY TABLES 

What you’ll learn to do: Conduct a chi-square 
goodness-of-fit test. Interpret the conclusion in context. 

In this section we will learn how to conduct a chi-square goodness-of-fit test which determines whether or not 
a sample fits the distribution claim in the population. We will then interpret the conclusion in context. 
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GOODNESS-OF-FIT (1 OF 2) 

Learning outcomes 

• Conduct a chi-square goodness-of-fit test. Interpret the conclusion in context. 

In this section, we learn a new hypothesis test called the chi-square goodness-of-fit test. A goodness-of-fit test 
determines whether or not the distribution of a categorical variable in a sample fits a claimed distribution in 
the population. 

We can answer the following research questions with a chi-square goodness-of-fit test: 

• According to the manufacturer of M&M candy, the color distribution for plain chocolate M&Ms is 13% 
brown, 13% red, 14% yellow, 24% blue, 20% orange, and 16% green. Do the M&Ms in our sample 
suggest that the color distribution is different? 

• During the presidential election of 2008, the Pew Research Center collected survey data that suggested 
that 24% of registered voters were liberal, 38% were moderate, and 38% were conservative. Is the 
distribution of political views different this year? 

• The distribution of blood types for whites in the United States is 45% type O, 41% type A, 10% type B, 
and 4% type AB. Is the distribution of blood types different for Asian Americans? 

The null hypothesis states a specific distribution of proportions for each category of the variable in the 
population. The alternative hypothesis says that the distribution is different from that stated in the null 
hypothesis. To test our hypotheses, we select a random sample from the population and determine the 
distribution of the categorical variable in the data. Of course, we need a method for comparing the observed 
distribution in the sample to the expected distribution stated in the null hypothesis. 
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Example 

Distribution of Color in Plain M&M Candies 

According to the manufacturer of M&M candy, the color distribution for plain chocolate M&Ms is 

13% brown, 13% red, 14% yellow, 24% blue, 20% orange, 16% green. This statement about the 

distribution of color in plain M&Ms is the null hypothesis. The alternative hypothesis says that this 

is not the distribution. 

H0: The color distribution for plain M&Ms is 13% brown, 13% red, 14% yellow, 24% blue, 20% 

orange, 16% green. 

Ha: The color distribution for plain M&Ms is different from the distribution stated in the null 

hypothesis. 

We select a random sample of 300 plain M&M candies to test these hypotheses. If the sample has 

the distribution of color stated in the null hypothesis, then we expect 13% of the 300 to be brown, 

13% of 300 to be red, 14% of 300 to be yellow, 24% of 300 to be blue, and so on. Here are the 

expected counts of each color for a sample of 300 candies: 

Of course, the distribution of color will vary in different samples, so we need to develop a way to 

measure how far a sample distribution is from the null distribution, something analogous to a 

z-score or T-score. Before we discuss this new measure, let’s look at two random samples selected 

from the null distribution to practice recognizing different amounts of variability. We can compare 

the distributions visually using ribbon charts. 
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Which random sample deviates the most from the null distribution? We address this question in 

the next activity. 

Try It 

Observed Counts for Two Random Samples 

Here are the observed counts for the two random samples shown above. This is the same 

information shown in the ribbon charts. 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=570#h5p-98 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=570#h5p-99 

Try It 

Here we continue to think about how to measure the amount that a sample distribution deviates 

from the null distribution. 

Random Sample #2 (n=300): 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=570#h5p-100 

Statisticians use the following formula to measure how far the observed data are from the null distribution. 
It is called the chi-square test statistic. The Greek letter chi is written χ. 
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Notes about this formula: 

• Recall that the symbol ∑ means sum. Each category contributes a term to the sum, so the chi-square test 
statistic is based on the entire distribution. If the categorical variable has six categories, then the chi-
square test statistic has six terms. If the categorical variable has three categories, then the chi-square test 
statistic has three terms, and so on. 

• Notice that the difference “observed minus expected” for each category is part of the formula, but each 
difference is squared. This is necessary because the differences will add to 0, as we saw in the previous 
activity. 

• Notice also that each squared difference is divided by the expected count for that category. The chi-
square test statistic looks at the difference between the observed and expected counts relative to the size 
of the expected count. 

Example 

Calculating χ2 

For Sample 1, the chi-square test statistic is approximately 12.94. For Sample 2, the chi-square test 

statistic is approximately 1.53. Usually, we use technology to calculate χ2, but here we show two 

calculations in detail to illustrate how the formula works. Notice that we are adding six terms. Each 

term represents the deviation for one color category. 

Random Sample #1 (n=300): 

 

              brown             red               yellow           blue             orange        green 
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Comment: In Sample 1, notice that both blue and green observed counts deviate from the 

expected counts by 10 candies. But green contributes more to the chi-square test statistic. This 

makes sense because the chi-square test statistic measures relative difference. Relative to the 

expected count of 48 green candies, an absolute error of 10 is large. It is almost 20% of the 

expected count. (10/48 is about 0.20). The squared difference relative to the expected count is 100/

48, about 2.08. Relative to the expected count of 72 blue candies, an error of 10 candies is smaller. It 

is only about 14% of the expected count (10/72 is about 0.14). The squared difference relative to the 

expected count is 100/72, about 1.39. 

Here is the chi-square calculation for Sample 2. 

Random Sample #2 (n=300): 

 

              brown             red               yellow           blue             orange        green 
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Calculating χ2 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=570#h5p-101 

We select a random sample of 300 registered voters this year. The table gives the observed counts, 

along with the expected counts. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=570#h5p-102 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=570#h5p-103 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=570#h5p-104 
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GOODNESS-OF-FIT (2 OF 2) 

Learning outcomes 

• Conduct a chi-square goodness-of-fit test. Interpret the conclusion in context. 

Here we continue with the details of the chi-square goodness-of-fit hypothesis test. A goodness-of-fit test 
determines whether or not the distribution of a categorical variable in a sample fits a claimed distribution in 
the population. The chi-square test statistic is our measure of how much the sample distribution deviates from 
the population distribution. 

As with other hypothesis tests, we need to be able to model the variability we expect in samples if the null 
hypothesis is true. Then we can determine whether the chi-square test statistic from the data is unusual or 
typical. An unusual χ2 value suggests that there are statistically significant differences between the sample data 
and the null distribution and provides evidence against the null hypothesis. This is the same logic we have been 
applying with hypothesis testing. 

Example 

Distribution of Color in Plain M&M Candies 

Recall the claim made by the manufacturer of M&M candy: the color distribution for plain chocolate 

M&Ms is 13% brown, 13% red, 14% yellow, 24% blue, 20% orange, 16% green. We used this 

distribution as our null hypothesis. 

H0: The color distribution for plain M&Ms is 13% brown, 13% red, 14% yellow, 24% blue, 20% 

orange, 16% green. 

Ha: The color distribution for plain M&Ms is different from the distribution stated in the null 

hypothesis. 

Suppose we buy a large bag of plain M&M candies to test these hypotheses. We randomly select 
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300 from the bag and view this as a random sample from the population of all plain M&M candies. 

Our observed counts along with the expected counts are shown in the following ribbon chart and 

the table. Recall that the expected counts come from the null hypothesis. 

We see that the sample distribution is very close to the null distribution for some colors and not 

others. The deviation appears largest for blue and orange. When we calculate the chi-square 

statistic, we see that these colors contribute the most to the chi-square value. 

 

              brown             red               yellow           blue             orange        green 

What can we conclude? Is this chi-square value unusual or typical? To answer these questions, we 

must take many random samples from the population described by the null hypothesis. As we have 

done before, we use a simulation to take random samples. We do this in the next activity. 
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Try It 

Reasoning from the Chi-Square Sampling Distribution 

This simulation allows you to click a button and generate random samples of 300 M&Ms. The table 

shows the color distribution of the sample, and the resulting chi-squared sampling distribution of 

all samples is plotted below. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=577 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=577#h5p-133 

Try It 

Reasoning from the Chi-Square Sampling Distribution 

Recall the distribution of political views for registered voters in 2008: 24% liberal, 38% moderate, 

and 38% conservative. We want to determine if the distribution is the same this year. 

H0: The distribution of political views this year is 0.24 liberal, 0.38 moderate, 0.38 

conservative. 

Ha: The distribution of political views this year differs from the 2008 distribution stated in 

the null hypothesis. 

Previously, we used the data shown in the table to calculate the chi-square test statistic of 1.61. 
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What can we conclude? 

Use this simulation to select at least 40 random samples from the null distribution. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=577 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=577#h5p-134 

 

Now mark each conclusion valid or invalid. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=577#h5p-135 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=577#h5p-136 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=577#h5p-137 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=577#h5p-138 

 
In the previous activities, we based our conclusions on a relatively small number of random samples. If 

we continued taking random samples, the resulting distribution of chi-square statistics has a pattern that can 
be described by a mathematical model, called the chi-square distribution. As with other models for sampling 
distributions, this model is a probability model. The total area under the curve equals 1. We again use the area 
under the curve to represent the probability of sample results occurring if the null hypothesis is true. This 
means we again use the mathematical model with technology to find a P-value. 

Chi-Square Distribution 

Unlike other sampling distributions we have studied, the chi-square model does not have a normal shape. It 
is skewed to the right. Like the T-model, the chi-square model is a family of curves that depend on degrees 
of freedom. For a chi-square goodness-of-fit test, the degrees of freedom is the number categories minus 1. 
(Sometimes this is written (r − 1), where r represents “rows” in the one-way table of observed counts.) The 
mean of the chi-square distribution is equal to the degrees of freedom. 
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A chi-square model is a good fit for the distribution of the chi-square test statistic only if the following 
conditions are met: 

• The sample is randomly selected. 
• All of the expected counts are 5 or greater. 

If these conditions are met, we use the chi-square distribution to find the P-value. We use the same logic that 
we use in all hypothesis tests to draw a conclusion based on the P-value. If the P-value is at least as small as the 
significance level, we reject the null hypothesis and accept the alternative hypothesis. 

The P-value is the likelihood that results from random samples have a χ2 value equal to or greater than that 
calculated from the data. As before, the P-value is a conditional probability based on the condition that the 
null hypothesis is true. For different degrees of freedom, the same χ2 value gives different P-values. For example, 
a chi-square value of 8 is statistically significant for α = 0.05 with 3 degrees of freedom. This is not true for 5 
degrees of freedom. As shown below, this is due to the change in the chi-square curve. 
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Try It 

Hypothesis Test about the Color Distribution for Plain M&Ms 

Recall the hypothesis test about the color distribution for plain M&Ms. 

H0: The color distribution for plain M&Ms is 13% brown, 13% red, 14% yellow, 24% blue, 20% 

orange, 16% green. 

Ha: The color distribution for plain M&Ms is different from the distribution stated in the null 

hypothesis. 

From the null hypothesis, we determined the expected counts for a sample of 300. A random 

sample of 300 M&Ms gave the observed counts shown in the table. We calculated a chi-square 

statistic of 9.23. 

This simulation allows you to plot a chi-squared distribution with a specified degrees of freedom 

value. You can also enter a point on the graph and get the p-value for that point. 

Use this simulation to find the p-value for our calculated chi-square statistic. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=577 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=577#h5p-139 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=577#h5p-140 

Comment 

Goodness-of-fit is an extension of the hypothesis test for one population proportion that we learned in 
Inference for One Proportion. Both of these hypothesis tests focus on a categorical variable in one population. 
In the hypothesis test for one population proportion, we focus on one category of the variable that we call “a 
success.” We make a claim about the proportion of “successes” in the population. For example, we previously 
investigated the claim that 20% of plain M&Ms are orange. In a chi-square goodness-of-fit test, we focus on the 
entire distribution of categories for the variable. So we investigate a claim that the color distribution for plain 
M&Ms is 13% brown, 13% red, 14% yellow, 24% blue, 20% orange, 16% green. The chi-square goodness-of-fit 
test does not give information about the deviation for specific categories. It gives a more general conclusion of 
“seems to fit the null distribution” or “does not fit the null distribution.” 

Let’s Summarize 

In “Chi-Square Test for One-Way Tables,” we learned an inference procedure called the chi-square goodness-
of-fit test. A goodness-of-fit test determines if the distribution of a categorical variable in a sample fits a claimed 
distribution in the population, or not. 

We can answer the following research questions with a chi-square goodness-of-fit test: 

• The distribution of blood types in the United States is 45% type O, 41% type A, 10% type B, and 4% 
type AB. Is the distribution of blood types the same in China? 

• The Mars Company claims that 24% of M&M plain milk chocolate candies are blue, 13% brown, 16% 
green, 20% orange, 10% red, and 14% yellow. Do the M&Ms in our sample suggest that the color 
distribution is different? 
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Chi-Square Test Statistic and Distribution 

The chi-square test statistic χ2 measures how far the observed data are from the null hypothesis by comparing 
observed counts and expected counts. Expected counts are the counts we expect to see if the null hypothesis is 
true. 

The chi-square model is a family of curves that depend on degrees of freedom. For a one-way table the 
degrees of freedom equals (r – 1). All chi-square curves are skewed to the right with a mean equal to the degrees 
of freedom. 

A chi-square model is a good fit for the distribution of the chi-square test statistic only if the following 
conditions are met: 

• The sample is randomly selected. 
• All expected counts are 5 or greater. 

If these conditions are met, we use the chi-square distribution to find the P-value. We use the same logic 
that we use in all hypothesis tests to draw a conclusion based on the P-value. If the P-value is at least as small 
as the significance level, we reject the null hypothesis and accept the alternative hypothesis. The P-value is the 
likelihood that results from random samples have a χ2 value equal to or greater than that calculated from the 
data if the null hypothesis is true. For different degrees of freedom, the same χ2 value gives different P-values. 
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INTRODUCTION TO CHI-SQUARE TESTS 
FOR TWO-WAY TABLES 

What you’ll learn to do: Conduct chi-square tests of 
independence and homogeneity. 

In the last section we learned the chi-square test for one-way tables. We will build upon this with two-way 
tables. We will learn how to conduct a chi-square test of independence and a chi-square test of homogeneity. 
We will then interpret the conclusion in context. 
CC licensed content, Shared previously 
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TEST OF INDEPENDENCE (1 OF 3) 

Learning outcomes 

• Conduct a chi-square test of independence. Interpret the conclusion in context. 

In this section, we learn two new hypothesis tests: a chi-square test of independence and a chi-square test of 
homogeneity. As the names imply, these two tests both use the same chi-square test statistic that we learned 
previously to compare observed and expected counts. In addition, P-values come from the same family of chi-
square distributions. Therefore, much of what we learned in the previous section, “Chi-Square Test for One-
Way Tables,” will be useful here. 

We begin with the chi-square test of independence. This test determines if there is a relationship between 
two categorical variables in the population. It is called a test of independence because “no relationship” means 
“independent.” If there is a relationship between the two variables in the population, then they are dependent. 

We can answer the following research questions with a chi-square test of independence: 

• For young adults in the United States, is gender related to body image? 
• Is alcohol abuse by New York firefighters dependent on participation in the 9/11 rescue operation? 
• In the United States, is race associated with political views (conservative, moderate, liberal)? 

The null hypothesis states that the two categorical variables are not related in the population. In other 
words, the variables are independent. The alternative hypothesis says that the two categorical variables are 
related in the population. In other words, the variables are dependent. To test our hypotheses, we select a 
random sample from the population and gather data on two categorical variables from each individual. As with 
all chi-square tests, the expected counts reflect the null hypothesis. So we need to determine what we expect 
to see in a sample if the variables are independent. As before, the chi-square test statistic measures the amount 
that the observed counts in the sample deviate from the expected counts. 
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Example 

Gender and Body Image 

What is your perception of your own body? Do you feel that you are overweight, underweight, or 

about right? A random sample of 1,200 U.S. college students answered this question as part of a 

larger survey. The following table shows part of the responses. 

Notice that the sample is a random sample from a single population: U.S. college students. Notice 

also that we collected data on two categorical variables for each student: gender and body image. 

This is the type of situation that is appropriate for a chi-square test of independence. 

Step 1: State the hypotheses. 

Here are two equivalent ways we can state the hypotheses for a test of independence. 

H0: There is no relationship between gender and body image for U.S. college students. 

Ha: There is a relationship between gender and body image for U.S. college students. 

We could also state the hypotheses like this: 

H0: Gender and body image are independent in the population of U.S. college students. 

Ha: Gender and body image are dependent in the population of U.S. college students. 

Step 2: Collect and analyze the data. 

We summarized the data for this sample in a two-way table: 

To investigate the relationship between gender and body image, we compare the percentage of 
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males and females who gave each body image response. In Relationships in Categorical Data with 

Intro to Probability, we called these conditional percentages. 

Comment: In this situation, gender is the explanatory variable. Body image is the response 

variable. We compare the distribution of the response variable (body image) for the groups defined 

by the explanatory variable (males and females). This means that explanatory category totals are 

the denominator of each fraction. In this case, we use male and female totals in the denominators. 

We graphed these conditional percentages using ribbon charts for a visual comparison. In this 

sample, we can see that a larger percentage of females (73.7%) than males (67%) perceive their 

body weight to be “about right.” A larger percentage of females (21.4%) than males (16.4%) also 

perceive themselves to be overweight. Males are as likely to say they are overweight (16.4%) as 

underweight (16.6%), but females as much less likely to perceive themselves to be underweight 

(4.9%). 

What do these conditional percentages have to do with independence? 

Recall the definition of independence from Probability and Probability Distribution. Two events, A 
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and B, are independent if the probability of A is the same as the probability of A when B has 

already occurred. We write this statement as P(A) = P(A | B). In this context, if gender and body 

image are independent variables, then gender does not affect the probability that a student will 

give a specific answer to the body image question. We use relative frequencies from the sample to 

represent these probabilities. 

For example, we would expect the following probabilities to be the same if gender and body image 

are independent variables. 

P(about right) = 855/1,200 = 0.713. 

P(about right | female) = 560/760 = 0.737, which is the conditional percent shown in the 

ribbon chart for females. 

P(about right | male) = 295/440 = 0.67, also a conditional percent shown in the ribbon chart 

for males. 

Obviously, when we compare the conditional percentages for males and females in this sample, we 

see that they differ. But do they differ enough to conclude that variables are dependent? Or could 

these results have come from a population where gender and body image are independent? In 

which case, the differences are due to chance fluctuation that happens in random sampling. We 

need to conduct a test of independence to find out. 
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Try It 

Alcoholism Risk in 9/11 Responders 

Some firefighters and other first responders to the World Trade Center on September 11, 2001, have 

experienced symptoms of traumatic stress, depression, anxiety, and drinking problems. Cornell 

University researchers conducted a survey of a random sample of New York firefighters, some of 

whom had participated in the 9/11 rescue efforts. The report’s title is “On the Front Line: The Work 

of First Responders in a Post-9/11 World.” To see the report, click here. We use data from this report 

to investigate the question: Are alcohol-related problems among New York firefighters associated 

with participation in the 9/11 rescue? 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=584#h5p-142 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=584#h5p-143 

Here are the data from the report: 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=584#h5p-144 
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TEST OF INDEPENDENCE (2 OF 3) 

Learning outcomes 

• Conduct a chi-square test of independence. Interpret the conclusion in context. 

Here we continue our chi-square test of independence for the variables gender and body image in the 
population of U.S. college students. 

Example 

Gender and Body Image Continued 

Step 1: State the hypotheses. 

Here are our hypotheses from the previous page: 

H0: There is no relationship between gender and body image for U.S. college students. (The 

variables are independent.) 

Ha: There is a relationship between gender and body image for U.S. college students. (The 

variables are dependent.) 

Step 2: Collect and analyze the data. 

If the variables are independent, the percentage of males and females with a given response will be 

the same or at least close. Previously, we determined that in our sample, there are differences in 

the percentage of males and females who answer “about right,” “overweight,” or “underweight.” 
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We need to determine if these differences are typical in random samples from a population where 

gender and body image are independent. Perhaps the differences we see in this sample are just 

fluctuations expected in random sampling. Or perhaps these differences are too large to be 

explained by chance. We will not know until we complete the hypothesis test. 

Step 3: Assess the evidence. 

We need to determine the expected values and the chi-square test statistic so that we can find the 

P-value. 

Calculating Expected Values for a Test of Independence 

Expected counts always describe what we expect to see in a sample if the null hypothesis is true. In 

this situation, if gender and body image are independent, then we expect the probability that a 

student answers “about right” in the sample to be the same probability that a male (or a female) 

student answers “about right” (similarly for “overweight” or “underweight” responses). 

Here are the calculations of expected counts for the response “about right”: 

Probability that a student will answer “about right”: P(about right) = (855/1,200) = 0.7125 

Expected count of females in the sample who will answer “about right”: 0.7125(760) = 541.5 

Expected count of males in the sample who will answer “about right”: 0.7125(440) = 313.5 
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Here are the calculations of expected counts for the response “overweight”: 

• Probability that a student will answer “overweight”: P(overweight) = (235/1,200) = 0.1958 

• Expected count of females in the sample who will answer “overweight”: 0.1958(760) = 148.8 

• Expected count of males in the sample who will answer “overweight”: 0.1958(440) = 86.2 

Try It 

Recall the study of New York firefighters. Our null hypothesis says that participation in 9/11 rescue 

operations is not associated with alcohol-related problems for New York firefighters. (Alcohol-

related problems and participation in 9/11 rescue are independent.) 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=590#h5p-145 

Try It 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=590#h5p-146 

Example 

More on Gender and Body Image 

Checking Conditions 

The conditions for use of the chi-square distribution are the same as we learned previously: 

1029  |  

https://pressbooks.cuny.edu/conceptsinstatistics/?p=590#h5p-145
https://pressbooks.cuny.edu/conceptsinstatistics/?p=590#h5p-146


• The sample is random. 

• All of the expected counts are 5 or greater. 

Since the data meets the conditions, we can proceed with calculating χ2 test statistic. 

Calculating the Chi-Square Test Statistic 

We calculate the chi-square test statistic as we did in “Chi-Square Test for One-Way Tables.” 

We will use technology to calculate the chi-square value. But for this sample, we will show the 

calculation. 

Finding Degrees of Freedom and the P-Value 

For a chi-square tests based on two-way tables, the degrees of freedom are 

(number of explanatory categories – 1) × (number of response categories – 1) 

You will also see this written: (r − 1)(c − 1), where r is the number of rows and c is the number of 

columns in the two-way table (when we write the table without row and column totals). In this 

case the degrees of freedom are (2 − 1)(3 −1 ) = 2. 

We use the chi-square distribution with df = 2 to find the P-value. Note that the chi-square test 

statistic for this sample is so large that it is off the scale used in the simulation. So we conclude that 

the P-value is essentially zero. 
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Step 4: Conclusion 

The relationship between gender and body image is statistically significant in this sample. We reject 

the null hypothesis and accept the alternative hypothesis. Gender and body image are dependent 

variables in the population of U.S. college students. (P-value is essentially 0.) 

Try It 

More on Gender and Body Piercing 

A study was done on the relationship between gender and ear piercing among high-school 

students. A sample of 1,000 students was chosen, then classified according to both gender and 

whether or not they had either of their ears pierced. The following information is available: 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=590#h5p-141 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=590#h5p-147 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=590#h5p-148 
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TEST OF INDEPENDENCE (3 OF 3) 

Learning outcomes 

• Conduct a chi-square test of independence. Interpret the conclusion in context. 

On this page, we practice the chi-square test for independence in its entirety and learn how to use statistical 
software to conduct this test. We also investigate the effect of sample size on the chi-square test statistic. 

Try It 

A Real Court Case 

In the early 1970s, a young man challenged an Oklahoma state law that prohibited the sale of 3.2% 

beer to males under age 21 but allowed its sale to females in the same age group. The case (Craig v. 

Boren, 429 U.S. 190, 1976) was ultimately heard by the U.S. Supreme Court. The state of Oklahoma 

argued that the law improved traffic safety. One of the three main pieces of data presented to the 

court was the result of a “random roadside survey.” This survey gathered information on gender 

and whether or not the driver had been drinking alcohol in the previous 2 hours. A total of 619 

drivers under 21 years of age were included in the survey. 

Use this simulation to answer the questions below. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=593 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=593#h5p-149 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=593#h5p-150 

Here are the data presented as evidence in court. 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=593#h5p-151 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=593#h5p-152 

In this table the expected counts are in parentheses next to the observed counts. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=593#h5p-153 

An interactive H5P element has been excluded from this version of the text. You can view it online 
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here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=593#h5p-154 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=593#h5p-155 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=593#h5p-156 

Comment: The Effect of Sample Size on Chi-Square 

With other hypothesis tests, we have seen that sample size can affect the P-value and our conclusion. This is 
also true for chi-square. To illustrate this idea, we multiplied all of the counts in the Oklahoma data by 3. 
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Notice that the conditional percentages do not change, so the new “data” shows the same relationship 
between gender and drinking before driving. The probability that a driver under the age of 21 drinks alcohol 
before driving is still about 15.0% (279/1857). Males are still more likely to consume alcohol before driving 
(231/1443 = 16.0%) than are females (48/414 = 11.6%), with the same difference of 4.4% that we saw in the 
original data. 

We used technology to find expected counts and the chi-square test statistic. 

Notice that multiplying the observed counts by 3 also triples the expected counts and the chi-square value. 
This increase in the chi-square value gives a statistically significant P-value of 0.0267, which changes our 
conclusion. With this larger sample, the evidence is strong enough to reject the null hypothesis. We conclude 
that gender is associated with drinking alcohol before driving. The variables are dependent for drivers under 
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the age of 21 in Oklahoma. With this sample size, the data provides evidence in support of the Oklahoma law 
that forbids sale of 3.2% beer to males and permits it to females with the goal of improving traffic safety. 

What’s the point? We see once again that sample size affects the P-value in a hypothesis test. This means 
that a small sample may not detect a relationship that exists between two categorical variables in a population. 
Conversely, a large sample may indicate that a relationship is statistically significant on the basis of differences 
in observed and expected counts that are not important in a practical sense. 
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TEST OF HOMOGENEITY 

Learning outcomes 

• Conduct a chi-square test of homogeneity. Interpret the conclusion in context. 

We have learned the details for two chi-square tests, the goodness-of-fit test, and the test of independence. Now 
we focus on the third and last chi-square test that we will learn, the test for homogeneity. This test determines 
if two or more populations (or subgroups of a population) have the same distribution of a single categorical 
variable. 

The test of homogeneity expands the test for a difference in two population proportions, which is the two-
proportion Z-test we learned in Inference for Two Proportions. We use the two-proportion Z-test when the 
response variable has only two outcome categories and we are comparing two populations (or two subgroups.) 
We use the test of homogeneity if the response variable has two or more categories and we wish to compare two 
or more populations (or subgroups.) 

We can answer the following research questions with a chi-square test of homogeneity: 

• Does the use of steroids in collegiate athletics differ across the three NCAA divisions? 
• Was the distribution of political views (liberal, moderate, conservative) different for last three 

presidential elections in the United States? 

The null hypothesis states that the distribution of the categorical variable is the same for the populations (or 
subgroups). In other words, the proportion with a given response is the same in all of the populations, and this 
is true for all response categories. The alternative hypothesis says that the distributions differ. 

Note: Homogeneous means the same in structure or composition. This test gets its name from the null 
hypothesis, where we claim that the distribution of the responses are the same (homogeneous) across groups. 

To test our hypotheses, we select a random sample from each population and gather data on one categorical 
variable. As with all chi-square tests, the expected counts reflect the null hypothesis. We must determine what 
we expect to see in each sample if the distributions are identical. As before, the chi-square test statistic measures 
the amount that the observed counts in the samples deviate from the expected counts. 
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Example 

Steroid Use in Collegiate Sports 

In 2006, the NCAA published a report called “Substance Use: NCAA Study of Substance Use of 

College Student-Athletes.” We use data from this report to investigate the following question: Does 

steroid use by student athletes differ for the three NCAA divisions? 

The data comes from a random selection of teams in each NCAA division. The sampling plan was 

somewhat complex, but we can view the data as though it came from a random sample of athletes 

in each division. The surveys are anonymous to encourage truthful responses. 

To see the NCAA report on substance use, click here. 

A note on NCAA divisions: The National Collegiate Athletic Association (NCAA) is divided into three 

divisions and oversees a wide range of collegiate sports. Division I schools have to sponsor more 

sports teams. These schools tend to be large universities with large athletic budgets supplemented 

by revenue from the games. They must offer athletic scholarships. Division II schools tend to be 

the smaller public universities and many private institutions. They have much smaller budgets that 

come solely from the college. The NCAA limits the amount Division II colleges can spend on athletic 

scholarships. Division III consists of colleges and universities that treat athletics as an 

extracurricular activity for students, instead of a source of revenue. These institutions do not offer 

athletic scholarships. 

Step 1: State the hypotheses. 

In the test of homogeneity, the null hypothesis says that the distribution of a categorical response 

variable is the same in each population. In this example, the categorical response variable is steroid 

use (yes or no). The populations are the three NCAA divisions. 

H0: The proportion of athletes using steroids is the same in each of the three NCAA divisions. 

Ha: The proportion of athletes using steroids is not same in each of the three NCAA divisions. 

Note: These hypotheses imply that the proportion of athletes not using steroids is also the same in 

each of the three NCAA divisions, so we don’t need to state this explicitly. For example, if 2% of the 

athletes in each division are using steroids, then 98% are not. 

Here is an alternative way we could state the hypotheses for a test of homogeneity. 
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H0: For each of the three NCAA divisions, the distribution of “yes” and “no” responses to the 

question about steroid use is the same. 

Ha: The distribution of responses is not the same. 

Step 2: Collect and analyze the data. 

We summarized the data from these three samples in a two-way table. 

We use percentages to compare the distributions of yes and no responses in the three samples. 

This step is similar to our data analysis for the test of independence. 

We can see that Division I and Division II schools have essentially the same percentage of athletes 

who admit steroid use (about 1.2%). Not surprisingly, the least competitive division, Division III, has 

a slightly lower percentage (about 1.0%). Do these results suggest that the proportion of athletes 

using steroids is the same for the three divisions? Or is the difference seen in the sample of Division 

III schools large enough to suggest differences in the divisions? After all, the sample sizes are very 

large. We know that for large samples, a small difference can be statistically significant. Of course, 

we have to conduct the test of homogeneity to find out. 

Note: We decided not to use ribbon charts for visual comparison of the three distributions because 

the percentage admitting steroid use is too small in each sample to be visible. 

Step 3: Assess the evidence. 
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We need to determine the expected values and the chi-square test statistic so that we can find the 

P-value. 

Calculating Expected Values for a Test of Homogeneity 

Expected counts always describe what we expect to see in a sample if the null hypothesis is true. In 

this situation, we expect the percentage using steroids to be the same for each division. What 

percentage do we use? We find the percentage using steroids in the combined samples. This 

calculation is the same as we did when finding expected counts for a test of independence, though 

the logic of the calculation is subtly different. 

Here are the calculations for the response “yes”: 

• Percentage using steroids in combined samples: 220/19,377 = 0.01135 = 1.135% 

Expected count of steroid users for Division I is 1.135% of Division I sample: 

• 0.01135(8,543) = 96.96 

Expected count of steroid users for Division II is 1.135% of Division II sample: 

• 0.01135(4,341) = 49.27 

Expected count of steroid users for Division III is 1.135% of Division III sample: 

• 0.01135(6,493) = 73.70 

Checking Conditions 
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The conditions for use of the chi-square distribution are the same as we learned previously: 

• A sample is randomly selected from each population. 

• All of the expected counts are 5 or greater. 

Since this data meets the conditions, we can proceed with calculating the χ2 test statistic. 

Calculating the Chi-Square Test Statistic 

There are no changes in the way we calculate the chi-square test statistic. 

We use technology to calculate the chi-square value. For this example, we show the calculation. 

There are six terms, one for each cell in the 3 × 2 table. (We ignore the totals, as always.) 

Finding Degrees of Freedom and the P-Value 

For chi-square tests based on two-way tables (both the test of independence and the test of 

homogeneity), the degrees of freedom are (r − 1)(c − 1), where r is the number of rows and c is the 

number of columns in the two-way table (not counting row and column totals). In this case, the 

degrees of freedom are (3 − 1)(2 − 1) = 2. 

We use the chi-square distribution with df = 2 to find the P-value. The P-value is large (0.4561), so 

we fail to reject the null hypothesis. 
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Step 4: Conclusion. 

The data does not provide strong enough evidence to conclude that steroid use differs in the three 

NCAA divisions (P-value = 0.4561). 

Try It 

First Use of Anabolic Steroids by NCAA Athletes 

The NCAA survey includes this question: “When, if ever, did you start using anabolic steroids?” The 

response options are: have never used, before junior high, junior high, high school, freshman year of 

college, after freshman year of college. We focused on those who admitted use of steroids and 

compared the distribution of their responses for the years 1997, 2001, and 2005. (These are the 

years that the NCAA conducted the survey. Counts are estimates from reported percentages and 

sample size.) Recall that the NCAA uses random sampling in its sampling design. 
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Use this simulation to answer the questions below. 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=600 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=600#h5p-157 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=600#h5p-158 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=600#h5p-159 
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An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=600#h5p-160 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=600#h5p-161 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=600#h5p-162 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=600#h5p-163 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=600#h5p-164 

We now know the details for the chi-square test for homogeneity. We conclude with two activities that will 
give you practice recognizing when to use this test. 
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Try It 

Gender and Politics 

Consider these two situations: 

A: Liberal, moderate, or conservative: Are there differences in political views of men and 

women in the United States? We survey a random sample of 100 U.S. men and 100 U.S. 

women. 

B: Do you plan to vote in the next presidential election? We ask a random sample of 100 U.S. 

men and 100 U.S. women. We look for differences in the proportion of men and women 

planning to vote. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=600#h5p-165 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=600#h5p-166 

Try It 

Steroid Use for Male Athletes in NCAA Sports 

We plan to compare steroid use for male athletes in NCAA baseball, basketball, and football. We 

design two different sampling plans. 
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A: Survey distinct random samples of NCAA athletes from each sport: 500 baseball players, 

400 basketball players, 900 football players. 

B. Survey a random sample of 1,800 NCAA male athletes and categorize players by sport and 

admitted steroid use. Responses are anonymous. 

An interactive H5P element has been excluded from this version of the text. You can view it online 

here: 

https://pressbooks.cuny.edu/conceptsinstatistics/?p=600#h5p-167 

Let’s Summarize 

In “Chi-Square Tests for Two-Way Tables,” we discussed two different hypothesis tests using the chi-square 
test statistic: 

• Test of independence for a two-way table 
• Test of homogeneity for a two-way table 

Test of Independence for a Two-Way Table 

• In the test of independence, we consider one population and two categorical variables. 
• In Probability and Probability Distribution, we learned that two events are independent if P(A|B) = 

P(A), but we did not pay attention to variability in the sample. With the chi-square test of 
independence, we have a method for deciding whether our observed P(A|B) is “too far” from our 
observed P(A) to infer independence in the population. 

• The null hypothesis says the two variables are independent (or not associated). The alternative 
hypothesis says the two variables are dependent (or associated). 

• To test our hypotheses, we select a single random sample and gather data for two different categorical 
variables. 

• Example: Do men and women differ in their perception of their weight? Select a random sample of 
adults. Ask them two questions: (1) Are you male or female? (2) Do you feel that you are overweight, 
underweight, or about right in weight? 
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Test of Homogeneity for a Two-Way Table 

• In the test of homogeneity, we consider two or more populations (or two or more subgroups of a 
population) and a single categorical variable. 

• The test of homogeneity expands on the test for a difference in two population proportions that we 
learned in Inference for Two Proportions by comparing the distribution of the categorical variable across 
multiple groups or populations. 

• The null hypothesis says that the distribution of proportions for all categories is the same in each group 
or population. The alternative hypothesis says that the distributions differ. 

• To test our hypotheses, we select a random sample from each population or subgroup independently. 
We gather data for one categorical variable. 

• Example: Is the rate of steroid use different for different men’s collegiate sports (baseball, basketball, 
football, tennis, track/field)? Randomly select a sample of athletes from each sport and ask them 
anonymously if they use steroids. 

The difference between these two tests is subtle. They differ primarily in study design. In the test of 
independence, we select individuals at random from a population and record data for two categorical variables. 
The null hypothesis says that the variables are independent. In the test of homogeneity, we select random 
samples from each subgroup or population separately and collect data on a single categorical variable. The null 
hypothesis says that the distribution of the categorical variable is the same for each subgroup or population. 

Both tests use the same chi-square test statistic. 

Chi-Square Test Statistic and Distribution 

For all chi-square tests, the chi-square test statistic χ2 is the same. It measures how far the observed data are 
from the null hypothesis by comparing observed counts and expected counts. Expected counts are the counts 
we expect to see if the null hypothesis is true. 

The chi-square model is a family of curves that depend on degrees of freedom. For a two-way table, the 
degrees of freedom equals (r − 1)(c − 1). All chi-square curves are skewed to the right with a mean equal to the 
degrees of freedom. 

A chi-square model is a good fit for the distribution of the chi-square test statistic only if the following 
conditions are met: 

• The sample is randomly selected. 
• All expected counts are 5 or greater. 
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If these conditions are met, we use the chi-square distribution to find the P-value. We use the same logic that 
we have used in all hypothesis tests to draw a conclusion based on the P-value. If the P-value is at least as small 
as the significance level, we reject the null hypothesis and accept the alternative hypothesis. The P-value is the 
likelihood that results from random samples have a χ2 value equal to or greater than that calculated from the 
data if the null hypothesis is true. 
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PUTTING IT TOGETHER: CHI-SQUARE 
TESTS 

Let’s Summarize 

In this module, Chi-Square Tests, we discussed three different hypothesis tests using the chi-square test statistic: 

• Goodness-of-fit for a one-way table 
• Test of independence for a two-way table 
• Test of homogeneity for a two-way table 

Goodness-of-Fit test for a One-Way Table 

• In a goodness-of-fit test, we consider one population and one categorical variable. 
• The goodness-of-fit test expands the z-test for a population proportion that we learned in Inference for 

One Proportion by looking at the distribution of proportions for all categories defined by the categorical 
variable. 

• The goodness-of-fit test determines whether a set of categorical data comes from a claimed distribution. 
The null hypothesis is that the proportion in each category in the population has a specific distribution. 
The alternative hypothesis says that the proportions in the population are not distributed as stated in the 
null hypothesis. 

• To test our hypotheses, we select a random sample from the population and gather data for one 
categorical variable. 

Test of Independence for a Two-Way Table 

• In the test of independence, we consider one population and two categorical variables. 
• In Probability and Probability Distribution, we learned that two events are independent if P(A|B) = 

P(A), but we did not pay attention to variability in the sample. With the chi-square test of 
independence, we have a method for deciding whether our observed P(A|B) is “too far” from our 
observed P(A) to infer independence in the population. 

• The null hypothesis says the two variables are independent (or not associated). The alternative 
hypothesis says the two variables are dependent (or associated). 
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• To test our hypotheses, we select a single random sample and gather data for two different categorical 
variables. 

Test of Homogeneity for a Two-Way Table 

• In the test of homogeneity we consider two or more populations (or two or more subgroups of a 
population) and a single categorical variable. 

• The test of homogeneity expands on the test for a difference in two population proportions that we 
learned in Inference for Two Proportions by comparing the distribution of the categorical variable across 
multiple groups or populations. 

• The null hypothesis says that the distribution of proportions for all categories is the same in each group 
or population. The alternative hypothesis says that the distributions differ. 

• To test our hypotheses, we select a random sample from each population or subgroup independently. 
We gather data for one categorical variable. 

Chi-Square Test Statistic and Distribution 

For all chi-square tests, the chi-square test statistic χ2 is the same. It measures how far the observed data are 
from the null hypothesis by comparing observed counts and expected counts. Expected counts are the counts 
we expect to see if the null hypothesis is true. 

The chi-square model is a family of curves that depend on degrees of freedom. For a one-way table the 
degrees of freedom equals (r – 1). For a two-way table, the degrees of freedom equals (r – 1)(c – 1). All chi-
square curves are skewed to the right with a mean equal to the degrees of freedom. 

A chi-square model is a good fit for the distribution of the chi-square test statistic only if the following 
conditions are met: 

• The sample is randomly selected. 
• All expected counts are 5 or greater. 

If these conditions are met, we use the chi-square distribution to find the P-value. We use the same logic that 
we have used in all hypothesis tests to draw a conclusion based on the P-value. If the P-value is at least as small 
as the significance level, we reject the null hypothesis and accept the alternative hypothesis. The P-value is the 
likelihood that results from random samples have a χ2 value equal to or greater than that calculated from the 
data if the null hypothesis is true. 
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MODULE 2 ASSIGNMENT: HISTOGRAM 

We will use the Best Actor Oscar winners (1970–2001) to learn how to create a histogram using a statistics 
package, and practice what we’ve learned about describing the histogram. 

Click here to see the entire dataset. 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 1: 

Describe the distribution of the ages of the Best Actor Oscar winners. Be sure to address shape, center, spread 
and outliers. 
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MODULE 2 ASSIGNMENT: FIVE-NUMBER 
SUMMARY 

In this activity, we will use the Best Actor Oscar winners (1970-2001) to: 

• Learn how to use a statistics package to produce the numerical measures, or “descriptive statistics” of a 
distribution. 

• Get some information about the distribution from its five-number summary. 

Click here to see the entire dataset. 
Choose your statistical package and follow the instructions to compute numerical measures. Note that “n” 

represents the sample size, which is the number of individuals in the data set. 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 1: 

Getting information from the output: 
a. How many observations are in this data set? 
b. What is the mean age of the actors who won the Oscar? 
c. What is the five-number summary of the distribution? 

Question 2: 

Get information from the five-number summary: 
a. Half of the actors won the Oscar before what age? 
b. What is the range covered by all the actors’ ages? 
c. What is the range covered by the middle 50% of the ages? 
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MODULE 2 ASSIGNMENT: BOXPLOT 

The objectives of this activity are: 

• To teach you how to use to produce side-by-side boxplots and the relevant descriptive statistics, 
• To let you practice comparing and contrasting distributions, and 
• To help you gain more intuition about variability through the interpretation of your results in context. 

The percentage of each entering Freshman class that graduated on time was recorded for each of six colleges 
at a major university over a period of several years. (Source: This data is distributed with the software package, 
Data Desk. (1993). Ithaca, NY: Data Description, Inc., and appears in http://lib.stat.cmu.edu/DASL/) 

In order to compare the graduation rates among the different colleges, we will create side-by-side boxplots 
(graduation rate by college), and supplement the graph with numerical measures. Follow the instructions, and 
then answer the questions based on the output you got. 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 
Answer the following questions: 

Question 1: 

Compare and contrast the distributions of the graduation rates at the different colleges. Be sure to address 
center, spread and outliers. 

Question 2: 

If you had to choose one college among the six colleges based on this data, which college would it be? Explain 
your reasoning. 
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Question 3: 

If you were debating between colleges B and F only, which one would you choose based on this data? Explain 
your reasoning. 
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MODULE 2 ASSIGNMENT: STANDARD 
DEVIATION 

The concept of standard deviation is less intuitive as a measure of spread than the range or the IQR. The 
following activity is designed to help you develop a better intuition for the standard deviation. 

Background 

At the end of a statistics course, students in three different classes rated their instructor on a number scale of 
1 to 9 (1 being “very poor,” and 9 being “best instructor I’ve ever had”). The following table provides three 
hypothetical rating data: 

And here are the histograms of the data: 
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Question 1: 

Assume that the average rating in each of the three classes is 5 (which should be visually reasonably clear from 
the histograms), and recall the interpretation of the SD as a “typical” or “average” distance between the data 
points and their mean. Judging from the table and the histograms, which class would have the largest standard 
deviation, and which one would have the smallest standard deviation? Explain your reasoning. 

Now check your intuition by finding the actual standard deviations of the three rating distributions. 
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Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 2: 

What are the standard deviations of the three rating distributions? Was your intuition correct? 
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MODULE 2 ASSIGNMENT: EXPLORING 
COVID-19 DATA GRAPHICALLY 

Open Pedagogy Assignments 

Assignments in which students use their agency and creativity to create knowledge artifacts that can support 
their own learning, their classmates’ learning, and the learning of students around the world. (See this peer-
reviewed article for more details.) Each of the assignments on this page is aligned to a learning outcome of 
Concepts in Statistics and we’ve identified the module where the reading appears. All of the assignments can be 
created with a cell phone camera or any video recording device, Google or Word documents, and your learning 
management system. 

Learning Outcome 2.1-2.6: Exploring COVID-19 Data Graphically 

Recall the initial steps to a statistical investigation: 

• Devise a research question 
• Produce data 
• Explore the data 

In this activity, we will practice the crucial step of making some initial sense of data so that it can be usefully 
interpreted. You will also have the chance to share this data with people outside the course who may find it 
helpful. One set of data that is relevant to us all is about the COVID-19 pandemic and the spread of the 
virus that causes it has radically changed our lives. Media outlets and research institutions have tried to help us 
understand the data surrounding the pandemic, such as the Coronavirus Resource Center at Johns Hopkins 
University. 

Instructions: 

STEP 1: Go to the US Centers for Disease Control (CDC) website and explore the data that is made publicly 
available there. 

STEP 2: Move on to the CDC’s data visualization tool. Notice the various dimensions of the COVID Case 
Surveillance Data you can display in the top drop-down menu at the left, including race and ethnicity, age 
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group, and sex. Take a closer look at this national data in the category of your choice, and display it in a “column 
chart” (histogram) view. Notice the column labels, how are they ordered? Take a screenshot of the histogram. 

STEP 3: Now take a look at the latest data on the age distribution of COVID-19 cases of your state. In a 
search engine, enter your state name and “COVID data” to find data from a state website. How does your 
state’s data compare to the national distribution? 

STEP 4: Use these two histograms to illustrate a short presentation. In your presentation, describe the 
distribution of the ages of positive cases and highlight the similarities and differences between the two datasets. 

STEP 5: Make a short recording of the presentation and share it with your instructor. Your instructor will 
then share the recordings with the class, so that you can all discuss and share. 

A Note To Teachers: This activity lends itself well to both individual and small group work. The first time 
your students complete this assignment, choose the best ones and ask students for permission to include them 
in future sections. In the first term, students will create videos, and with their permission, you can upload them 
into your course in order to show examples for the next term. The idea is to have students generate content that 
other students can learn from in this assignment. 

Further, consider having students post their screenshots, links to legitimate data sources, and a very short 
“headline” to a social media platform. Help students learn to find and share data! 
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MODULE 3 ASSIGNMENT: SCATTERPLOT 

In this exercise we will: 

• Learn how to create a scatterplot. 
• Use the scatterplot to examine the relationship between two quantitative variables. 
• Learn how to create a labeled scatterplot. 
• Use the labeled scatterplot to better understand the form of a relationship. 

In this activity we explore the relationship between weight and height for 81 adults. We will use height as the 
explanatory variable. Weight is the response variable. 

We will then label the men and women by adding the categorical variable gender to the scatterplot. We will 
see if separating the groups contributes to our understanding of the form of the relationship between height 
and weight. 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 1: 

Describe the relationship between the height and weight of the subjects. To describe the relationship write 
about the pattern (direction, form, and strength) and any deviations from the pattern (outliers). 

So far we have studied the relationship between height and weight for all of the males and females together. 
It may be interesting to examine whether the relationship between height and weight is different for males 
and females. To visualize the effect of the third variable, gender, we will indicate in the scatterplot which 
observations are males and which are females. 
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Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 2: 

Compare and contrast the relationship between height and weight for males and females. To compare and 
contrast the relationships by gender write about the pattern (direction, form, and strength) and any deviations 
from the pattern (outliers) for each group. 

Discuss how the patterns for the two groups are similar and how they are different. 

1069  |  MODULE 3 ASSIGNMENT: SCATTERPLOT

https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/scatterplot5lbd/scatterplot5lbd_r1.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/scatterplot5lbd/scatterplot5lbd_statcrunch1.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/scatterplot5lbd/scatterplot5lbd_minitab1.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/scatterplot5lbd/scatterplot5lbd_excel1.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/scatterplot5lbd/scatterplot5lbd_ti1.html


MODULE 3 ASSIGNMENT: LINEAR 
RELATIONSHIPS 

In this activity we will: 

• Learn how to compute the correlation. 
• Practice interpreting the value of the correlation. 
• See an example of how including an outlier can increase the correlation. 

Recall the following example: The average gestation period, or time of pregnancy, of an animal is closely related 
to its longevity—the length of its lifespan. Data on the average gestation period and longevity (in captivity) of 
40 different species of animals have been recorded. 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 
Remember that the correlation is only an appropriate measure of the linear relationship between two 

quantitative variables. First produce a scatterplot to verify that gestation and longevity are nearly linear in their 
relationship. 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 
Observe that the relationship between gestation period and longevity is linear and positive. Now we will 

compute the correlation between gestation period and longevity. 
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Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 1: 

Report the correlation between gestation and longevity and comment on the strength and direction of the 
relationship. Interpret your findings in context. 

Now return to the scatterplot that you created earlier. Notice that there is an outlier in both longevity (40 
years) and gestation (645 days). Note: This outlier corresponds to the longevity and gestation period of the 
elephant. 

What do you think will happen to the correlation if we remove this outlier? 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 2: 

Report the new value for the correlation between gestation and longevity and compare it to the value you 
found earlier when the outlier was included. What is it about this outlier that results in the fact that its 
inclusion in the data causes the correlation to increase? (Hint: look at the scatterplot.) 

Comment 

In the last activity, we saw an example where there was a positive linear relationship between the two variables, 
and including the outlier just “strengthened” it. Consider the hypothetical data displayed by the following 
scatterplot: 

 

1071  |  MODULE 3 ASSIGNMENT: LINEAR RELATIONSHIPS

https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/linear4lbd/linear4lbd_r2.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/linear4lbd/linear4lbd_statcrunch2.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/linear4lbd/linear4lbd_minitab2.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/linear4lbd/linear4lbd_excel2.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/linear4lbd/linear4lbd_ti2.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/linear4lbd/linear4lbd_r3.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/linear4lbd/linear4lbd_statcrunch3.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/linear4lbd/linear4lbd_minitab3.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/linear4lbd/linear4lbd_excel3.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/linear4lbd/linear4lbd_ti3.html


In this case, the low outlier gives an “illusion” of a positive linear relationship, whereas in reality, there is no 
linear relationship between X and Y. 
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MODULE 3 ASSIGNMENT: LINEAR 
REGRESSION 

In this activity we will: 

• Find a regression line and plot it on the scatterplot. 
• Examine the effect of outliers on the regression line. 
• Use the regression line to make predictions and evaluate how reliable these predictions are. 

Background 

The modern Olympic Games have changed dramatically since their inception in 1896. For example, many 
commentators have remarked on the change in the quality of athletic performances from year to year. 
Regression will allow us to investigate the change in winning times for one event—the 1,500 meter race. 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 
Observe that the form of the relationship between the 1,500 meter race’s winning time and the year is linear. 

The least squares regression line is therefore an appropriate way to summarize the relationship and examine the 
change in winning times over the course of the last century. We will now find the least squares regression line 
and plot it on a scatterplot. 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 
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Question 1: 

Give the equation for the least squares regression line, and interpret it in context. 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 2: 

Give the equation for this new line and compare it with the line you found for the whole dataset, commenting 
on the effect of the outlier. 

Question 3: 

Our least squares regression line associates years as an explanatory variable, with times in the 1,500 meter race 
as the response variable. Use the least squares regression line you found in question 2 to predict the 1,500 meter 
time in the 2008 Olympic Games in Beijing. Comment on your prediction. 
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MODULE 3 ASSIGNMENT: WHAT’S THE 
HARDEST PART, AND HOW WOULD YOU 
EXPLAIN IT BETTER? 
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Open Pedagogy Assignments 

Assignments in which students use their agency and creativity to create knowledge artifacts that can support 
their own learning, their classmates’ learning, and the learning of students around the world. (See this peer-
reviewed article for more details.) 

Each of the assignments on this page is aligned to a learning outcome of Concepts in Statistics and we’ve 
identified the module where the reading appears. All of the assignments can be created with a cell phone camera 
or any video recording device, Google or Word documents, and your learning management system. 

Assignment: What’s the hardest part, and how would you 
explain it better? 

Learning Outcomes 3.1-3.5: Examining Relationships: Quantitative 
Data 

In the module on Examining Relationships: Quantitative Data, you worked through several approaches to 
summarizing and analyzing the relationship between two quantitative variables. For this assignment, you are 
going to reflect on which concept(s) in this module were most difficult for you to learn. 

The product of your work will help future students learn about some of the most difficult concepts in the 
course. Thus, think of your audience as friends who are taking Concepts in Statistics in the next term. You 
want to help them understand a concept in the course that was particularly difficult for you. 

First, identify a concept from this module that you struggled to learn regarding quantitative data in 
statistics. Review the content in the module and anything further you learned in class. Consider focusing on 
one of the sections in the module: 

• Scatterplots 
• Linear Relationships 
• Association vs Causation 
• Linear Regression 
• Assessing the Fit of a Line 

Second, think of how you would explain the concept in your own words to a friend who is also taking the 
course. Keep these questions in mind: 

• What did you miss when you first tried to grasp the concept? In other words, did you have to read 
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something twice? 
• How would you phrase the idea or concept differently? In other words, how would you explain the 

concept in your own words? 

Third, using your cell phone or any other recording device, create a short video explaining the topic in your 
own words. You don’t have to edit or create a professional-grade film. You’ve most likely have done this type 
of recording already on social media, so feel free to use the same informal conversational tone. Use additional 
images or tips that would have been helpful for you. 

Lastly, share the video with your instructor. After grading and with your permission, your video may appear 
in future sections of the course to improve other students’ learning. 

A Note To Teachers: The first time your students complete this assignment, choose the best ones and ask 
students for permission to include them in future sections. Just post the videos in the appropriate module in 
the LMS. The idea is to have students generate content that other students can learn from in this assignment. 
You may want to provide parameters such as time limit, use of examples, etc. 
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MODULE 8 ASSIGNMENT: HYPOTHESIS 
TESTING FOR THE POPULATION 
PROPORTION P 

The objectives of this activity are: 
1. To give you guided practice in carrying out a hypothesis test about a population proportion. (Note: This 

hypothesis test is also called a z-test for the population proportion.) 
2. To learn how to use statistical software to help you carry out the test. 
Background: This activity is based on the results of a recent study on the safety of airplane drinking water 

that was conducted by the U.S. Environmental Protection Agency (EPA). A study found that out of a random 
sample of 316 airplanes tested, 40 had coliform bacteria in the drinking water drawn from restrooms and 
kitchens. As a benchmark comparison, in 2003 the EPA found that about 3.5% of the U.S. population have 
coliform bacteria-infected drinking water. The question of interest is whether, based on the results of this 
study, we can conclude that drinking water on airplanes is more contaminated than drinking water in general 

Question 1: 

Let p be the proportion of contaminated drinking water in airplanes. Write down the appropriate null and 
alternative hypotheses. 

Question 2: 

Based on the collected data, is it safe to use the z-test for p in this scenario? Explain. 
Use the following instructions to conduct the z-test for the population proportion: 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 
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Question 3: 

Now that we have established that it is safe to use the Z-test for p for our problem, go ahead and carry out the 
test. Paste the output below. 

Question 4: 

Note that, according to the output, the test statistic for this test is 8.86. Make sure you understand how this 
was calculated, and give an interpretation of its value. 

Question 5: 

We calculated a P-value of 0 in this test. Interpret what that means, and draw your conclusions. 
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MODULE 9 ASSIGNMENT: A STATISTICAL 
INVESTIGATION USING SOFTWARE 

Risk Factors for Low Birth Weight 

Rates of infant mortality, birth defect, and premature labor are high for babies with low birth weight. There 
are many factors that may contribute to low birth weight. 

In this activity, we use data from a random sample of women who participated in a study in 1986 at 
the Baystate Medical Center in Springfield, MA. (Source: Hosmer and Lemeshow (2000), Applied Logistic 
Regression: Second Edition.) 

For the 30 women in the study with a history of premature labor, a proportion of 18/30 = 0.60 (60%) had 
babies with low birth weight. For the remaining 159 women, a proportion of 41/159 = 0.26 (26%) had babies 
with low birth weight. 

We now investigate the following research question: do the data provide evidence that the proportion of 
babies born with low birth weight is higher for women with a history of premature labor? This question is 
answered with a hypothesis test. To conduct the test we use a 1% level of significance. 

Question 1: 

Is this study observational or experimental? 

Question 2: 

Before analyzing the data, use your own experience and intuition to predict what the data will show. Do you 
think the proportion of babies with low birth weight is higher for women with a history of premature labor? 

Question 3: 

We will test the claim that the proportion of women with low birth weight babies is higher among women with 
a history of premature labor. What are the null and alternative hypotheses? 
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Question 4: 

Are the criteria for approximate normality satisfied? 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 5: 

State the test statistic and P-value. Interpret these values. 

Question 6: 

Give a conclusion in context, and discuss whether a causal conclusion is appropriate. 
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MODULE 10 ASSIGNMENT: DISTRIBUTION 
OF SAMPLE MEANS 

Question 1: 

Scores on the math portion of the SAT (SAT-M) in a recent year have followed a normal distribution with 
mean μ = 507 and standard deviation σ = 111. 

What is the probability that the mean SAT-M score of a random sample of 4 students who took the test that 
year is more than 600? Explain why you can solve this problem, even though the sample size (n = 4) is very low. 

Question 2: 

Bags of a certain brand of potato chips say that the net weight of the contents is 35.6 grams. Assume that the 
standard deviation of the individual bag weights is 5.2 grams. 

A quality control engineer selects a random sample of 35 bags. The mean weight of these 35 bags turns out 
to be 33.6 grams. 

If the mean and standard deviation of individual bags is reported correctly, what is the probability that a 
random sample of 35 bags has a mean weight of 33.6 grams or less. 

Question 3: 

Does the sample provide strong evidence that the mean weight of the bags is lower than the 35.6 grams listed 
on the package? 
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MODULE 10 ASSIGNMENT: CONNECTION 
BETWEEN CONFIDENCE INTERVALS AND 
SAMPLING DISTRIBUTIONS 

The purpose of this activity is to help give you a better understanding of the underlying reasoning behind the 
interpretation of confidence intervals. In particular, you will gain a deeper understanding of why we say that 
we are “95% confident that the population mean is covered by the interval.” 

One or more interactive elements has been excluded from this version of the text. You can view 

them online here: https://pressbooks.cuny.edu/conceptsinstatistics/?p=1707 

 
Click here to open this simulation in a separate tab. 
When the simulation loads you will see a normal-shaped distribution, which represents the sampling 

distribution of the mean (x-bar) for random samples of a particular fixed sample size, from a population with 
a fixed standard deviation of σ. 

The green line marks the value of the population mean, μ. 
To begin the simulation, click the very top “sample” button at the topmost right of the simulation. You will 

see a line segment appear underneath the distribution; you should see that the line segment has a tiny red dot 
in the middle. 

You have used the simulation to select a single sample from the population; the simulation has automatically 
computed the mean (x-bar) of your sample; your x-bar value is represented by the little red dot in the middle 
of the line segment. The line segment represents a confidence interval. Notice that, by default, the simulation 
used a 95% confidence level. 

Question 1: 

Did your 95% confidence interval contain (or “cover”) the population mean μ (the green line)? 
If your confidence interval did cover the population mean μ, then the simulation will have recorded 1 “hit” 

on the right side of the simulation. 
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Now, click to select another single sample. 

Question 2: 

Was your second sample mean x-bar (the new red dot) the same value as your 1st sample mean? (i.e., is it in the 
same relative location along the axis?) Why is this result to be expected? 

Question 3: 

A new 95% confidence interval has also been constructed (the new line segment, centered at the location of 
your second x-bar). Does the new interval cover the population mean μ? 

Notice, under “total” on the right side of the simulation, the number of total selected samples has been 
tallied. 

Now click “sample 50” repeatedly until the simulation tallies a “total” of around 1,000 samples. You will 
see that the simulation computes the “percent hit” for all the intervals. 

Question 4: 

What percentage of the many 95% confidence intervals should cover the population mean μ? 

Question 5: 

Now let’s summarize some key ideas. 
Based on what you’ve seen on the simulation (with the level set at 95%), decide which of the following 

statements are true and which are false. 
1. Each interval is centered at the population mean (μ). 

2. Each interval is centered at the sample mean (x-bar). 
3. The population mean (μ) changes when different samples are selected. 
4. The sample mean (x-bar) changes when different samples are selected. 
5. In the long run, 95% of the intervals will contain (or “cover”) the sample mean (x-bar). 
6. In the long run, 95% of the intervals will contain (or “cover”) the population mean (μ). 
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MODULE 10 ASSIGNMENT: HYPOTHESIS 
TESTING FOR THE POPULATION MEAN 

The purpose of this activity is to give you guided practice in going through the process of a t-test for the 
population mean, and teach you how to carry out this test using statistical software. 

Background: 

A group of 75 college students from a certain liberal arts college were randomly sampled and asked about 
the number of alcoholic drinks they have in a typical week. The file containing the data is linked below. The 
purpose of this study was to compare the drinking habits of the students at the college to the drinking habits 
of college students in general. In particular, the dean of students, who initiated this study, would like to check 
whether the mean number of alcoholic drinks that students at his college have in a typical week differs from the 
mean of U.S. college students in general, which is estimated to be 4.73. 

Question 1: 

Let μ be the mean number of alcoholic beverages that students in the college drink in a typical week. State the 
hypotheses that are being tested in this problem. 

Question 2: 

Here is a histogram of the data. Can we safely use the t-test with this data? 
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Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 3: 

State the test statistic, interpret its value and show how it was found. 

Question 4: 

Based on the P-value, draw your conclusions in context. 

Question 5: 

What would your conclusions be if the dean of students suspected that the mean number of alcoholic drinks 
that students in the college consume in a typical week is lower than the mean of U.S. college students in 
general? In other words, if this were a test of the hypotheses: 

H0: μ = 4.73 drinks per week 
Ha: μ < 4.73 drinks per week 
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Question 6: 

Now suppose that instead of the 75 students having been randomly selected from the entire student body, 
the 75 students had been randomly selected only from the engineering classes at the college (for the sake of 
convenience). 

Address the following two issues regarding the effect of such a change in the study design: 
a. Would we still be mathematically justified in using the T-test for obtaining conclusions, as we did 

previously? 
b. Would the resulting conclusions still address the question of interest (which, remember, was to investigate 

the drinking habits of the students at the college as whole)? 
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MODULE 10 ASSIGNMENT: MATCHED PAIRS 

The purpose of this activity is to give you guided practice in carrying out the paired t-test and to teach you 
how to obtain the paired t-test output using statistical software. Here is some background for the historically 
important data that we are going to work with in this activity. 

Background: Gosset’s Seed Plot Data 

 

 
 
William S. Gosset was employed by the Guinness brewing company of Dublin. Sample sizes available for 

experimentation in brewing were necessarily small, and new techniques for handling the resulting data were 
needed. Gosset consulted Karl Pearson (1857-1936) of University College in London, who told him that the 
current state of knowledge was unsatisfactory. Gosset undertook a course of study under Pearson, and the 
outcome of his study was perhaps the most famous paper in statistical literature, “The Probable Error of a 
Mean” (1908), which introduced the t distribution. 

Since Gosset was contractually bound by Guinness, he published under a pseudonym, “Student”; hence, 
the t distribution is often referred to as Student’s t distribution. 

As an example to illustrate his analysis, Gosset reported in his paper on the results of seeding 11 different 
plots of land with two different types of seed: regular and kiln-dried. There is reason to believe that drying 
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seeds before planting will increase plant yield. Since different plots of soil may be naturally more fertile, this 
confounding variable was eliminated by using the matched pairs design and planting both types of seed in all 
11 plots. 

The resulting data (corn yield in pounds per acre) are as follows: 
 

 
 
We use these data to test the hypothesis that kiln-dried seed yields more corn than regular seed. 
Because of the nature of the experimental design (matched pairs), we are testing the difference in yield. 
 

 
 
Note that the differences were calculated: regular – kiln-dried. 

Question 1: 

State the appropriate hypotheses that are being tested here. Be sure to define the parameter that you are using. 
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Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 2: 

Are the conditions that allow me to safely use the paired T-test satisfied? Support your answer by using 
appropriate visual displays. 

Question 3: 

Based on the visual display that you produced for answering the previous question, does it seem like there is 
some evidence in the data in favor of the alternative hypothesis? Explain. 

Question 4: 

Carry out the paired t-test, state the test statistic and P-value, and state your conclusion in context. 

MODULE 10 ASSIGNMENT: MATCHED PAIRS  |  1090

https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/_u5_m2_lbd4/_u5_m2_lbd4_r0.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/_u5_m2_lbd4/_u5_m2_lbd4_statcrunch0.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/_u5_m2_lbd4/_u5_m2_lbd4_minitab0.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/_u5_m2_lbd4/_u5_m2_lbd4_excel0.html
https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/assignments/_u5_m2_lbd4/_u5_m2_lbd4_ti0.html


MODULE 10 ASSIGNMENT: CHECKING 
CONDITIONS 

The purpose of this activity is to give you guided practice in checking whether the conditions that allow us to 
use the two-sample t-test are met. (Recall that the two-sample t-test is another name for the hypothesis test for 
a difference in two population means.) 

Background 

A researcher wanted to study whether or not men and women differ in the amount of time they watch TV 
during a week. In each of the following cases, you’ll have to decide whether we can use the two-sample t-test to 
test this claim or not. 

Case 1 

A random sample of 40 adults was chosen (22 of whom were women and 18 of whom were men). At the end 
of the week, each of the 40 subjects reported the total amount of time (in minutes) that he/she watched TV 
during that week. 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 1: 

Can we use the two-sample T-test to test this claim? 
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Case 2 

A random sample of 400 adults was chosen (191 women and 209 men). At the end of the week, each of the 
400 subjects reported the total amount of time (in minutes) that he or she watched TV during that week. 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 2: 

Can we use the two-sample T-test to test this claim? 

Case 3 

A random sample of 25 women and another random sample of 25 men was chosen. At the end of the week, 
each of the 50 subjects reported the total amount of time (in minutes) that he or she watched TV during that 
week. 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 3: 

Can we use the two-sample T-test to test this claim? 

Case 4 

A random sample of 50 married couples was chosen, which was split into a sample of 50 men and a sample of 
50 women. At the end of the week, each of the 100 subjects reported the total amount of time (in minutes) 
that he or she watched TV during that week. 
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Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 4: 

Can we use the two-sample T-test to test this claim? 
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MODULE 10 ASSIGNMENT: TWO 
INDEPENDENT SAMPLES 

The purpose of this activity is to give you guided practice in obtaining and interpreting a 95% confidence 
interval for μ1 − μ2 following a two-sample T-test that rejected H0. Recall our second example: 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question: 

Obtain the 95% confidence interval for μ1 – μ2 and interpret it in context. 
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MODULE 11 ASSIGNMENT: TEST OF 
INDEPENDENCE USING TECHNOLOGY 

The purpose of this activity is to gain experience conducting a chi-square test of independence using 
technology. 

Recall the report On the Front Line: The Work of First Responders in a Post-9/11 World. We will use 
data from this report to investigate the question: Are alcohol-related problems among New York firefighters 
associated with participation in the 9/11 rescue? 

Here again are our observed data: 

No risk for alcohol 
problems 

Moderate to severe risk for alcohol 
problems 

Participated in 9/11 rescue 793 309 1102 

Did not participate in 9/11 
rescue 441 110 551 

1234 419 1653 

Question 1: 

State the appropriate hypotheses for the chi-square test for independence in this case. 
Now you will check whether the conditions for the chi-square test are met. In order to do this, you’ll need 

to first launch the actual research report and read the last paragraph on page iii of the introduction (starting 
with the “The study was fully funded…”) 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 
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Question 2: 

Does the data meet the conditions for the chi-square test? 

Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 3: 

State your conclusion in context. Also explain what the P-value means as a conditional probability based on 
the null hypothesis. 
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MODULE 11 ASSIGNMENT: USING 
TECHNOLOGY WITH DATA TO RUN A 
HYPOTHESIS TEST 

The purpose of this activity is to give you guided practice in carrying out the two-sample t-test, and to show 
you how to use software to aid in the process. 

Background 

Do undergraduates sleep less than graduate students? A student conducted a study of sleep habits at a large 
state university. His hypothesis is that undergraduates will party more and sleep less than graduate students. 
He surveyed random samples of 75 undergraduate students and 50 graduate students. Subjects reported the 
hours they sleep in a typical night. 

For this hypothesis test, he defined the population means as follows: 

• μ1 is the mean number of hours undergraduate students sleep in a typical night. 
• μ2 is the mean number of hours graduate students sleep in a typical night. 

Question 1: 

State the null and alternative hypotheses that are being tested here. 

Question 2: 

Explain why we can safely use the two-sample T-test in this case. 
Comment: Before we move on to carry out the test, it is important to realize that in the two-sample 

problem, the data can be provided in three possible ways: 
(i) Sample data in one column, and another column that indicates which sample the observation belongs to. 

Recall that this is the way the data were given in our leading example (looks vs. personality score and gender): 
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Score (Y) Gender (X) 

15 Male 

13 Female 

10 Female 

12 Male 

14 Female 

14 Male 

6 Male 

17 Male 

… … 

Note that essentially, one column contains the explanatory variable, and one contains the response. 
(ii) Sample data in different columns—data from each of the two samples appear in a column dedicated to 

that category. As you’ll see, this is the way the data are provided in this example: 

Undergraduate Graduate 

6 8 

5 5 

3 6 

6 6 

… … 

(iii) Summarized data—we are not given the actual data, but just the data summaries: sample sizes, sample 
means and sample standard deviations of both samples. Recall that in our second example, the data were given 
in this format. 

n y-bar S 

20-29 yrs old 712 83.4 18.7 

75+ yrs old 1001 78.5 19.0 
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Instructions 

Click on the link corresponding to your statistical package to see instructions for completing the activity, and 
then answer the questions below. 

R | StatCrunch | Minitab | Excel | TI Calculator 

Question 3: 

Carry out the test and report the test statistic and P-value. 

Question 4: 

Draw your conclusions in context. 
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