7.2 Impact Craters on Earth and their Consequences
Thus far, when we have discussed Earth’s geology, we have dealt only with the effects of internal forces, expressed through the processes of plate tectonics and volcanism. On the Moon, in contrast, we see primarily craters, produced by an external force—the impacts of interplanetary debris such as asteroids and comets. Why don’t we see more evidence on Earth of the kinds of impact craters that are so prominent on the Moon and other worlds?
7.2.1 Where Are the Craters on Earth?
It is not possible that Earth escaped being struck by the interplanetary debris that has pockmarked the Moon. From a cosmic perspective, the Moon is almost next door. Our atmosphere does make small pieces of cosmic debris burn up (which we see as meteors—commonly called shooting stars). But, the layers of our air provide no shield against the large impacts that form craters several kilometers in diameter and are common on the Moon.
In the course of its history, Earth must therefore have been impacted as heavily as the Moon. The difference is that, on Earth, these craters are destroyed by our active geology before they can accumulate. As plate tectonics constantly renews our crust, evidence of past cratering events is slowly erased. Only in the past few decades have geologists succeeded in identifying the eroded remnants of many impact craters (Figure 7.7). Even more recent is our realization that, over the history of Earth, these impacts have had an important influence on the evolution of life.
The collision of interplanetary debris with Earth is not a hypothetical idea. Evidence of relatively recent impacts can be found on our planet’s surface. One well-studied historic collision took place on June 30, 1908, near the Tunguska River in Siberia. In this desolate region, there was a remarkable explosion in the atmosphere about 8 kilometers above the surface. The shock wave flattened more than a thousand square kilometers of forest (Figure 7.8). Herds of reindeer and other animals were killed, and a man at a trading post 80 kilometers from the blast was thrown from his chair and knocked unconscious. The blast wave spread around the world, as recorded by instruments designed to measure changes in atmospheric pressure.
If it had been larger or made of stronger material (such as metal), the Tunguska projectile would have penetrated all the way to the surface of Earth and exploded to form a crater. Instead, only the heat and shock of the atmospheric explosion reached the surface, but the devastation it left behind in Siberia bore witness to the power of such impacts. Imagine if the same rocky impactor had exploded over New York City in 1908; history books might today record it as one of the most deadly events in human history.
Tens of thousands of people witnessed directly the explosion of a smaller (20-meter) projectile over the Russian city of Chelyabinsk on an early winter morning in 2013. It exploded at a height of 21 kilometers in a burst of light brighter than the Sun, and the shockwave of the 0.5-megaton explosion broke tens of thousands of windows and sent hundreds of people to the hospital. Rock fragments (meteorites) were easily collected by people in the area after the blast because they landed on fresh snow.
For Further Exploration
Dr. David Morrison, one of the original authors of this textbook, provides a nontechnical talk about the Chelyabinsk explosion, and impacts in general.
The best-known recent crater on Earth was formed about 50,000 years ago in Arizona. The projectile in this case was a lump of iron about 40 meters in diameter. Now called Meteor Crater and a major tourist attraction on the way to the Grand Canyon, the crater is about a mile across and has all the features associated with similar-size lunar impact craters (Figure 7.9). Meteor Crater is one of the few impact features on Earth that remains relatively intact; some older craters are so eroded that only a trained eye can distinguish them. Nevertheless, more than 150 have been identified. (See the list of suggested online sites at the end of this chapter if you want to find out more about these other impact scars.)
The impact that produced Meteor Crater would have been dramatic indeed to any humans who witnessed it (from a safe distance) since the energy release was equivalent to a 10-megaton nuclear bomb. But such explosions are devastating only in their local areas; they have no global consequences. Much larger (and rarer) impacts, however, can disturb the ecological balance of the entire planet and thus influence the course of evolution.
The best-documented large impact took place 65 million years ago, at the end of what is now called the Cretaceous period of geological history. This time in the history of life on Earth was marked by a mass extinction, in which more than half of the species on our planet died out. There are a dozen or more mass extinctions in the geological record, but this particular event has always intrigued paleontologists because it marks the end of the dinosaur age. For tens of millions of years these great creatures had flourished and dominated. Then, they suddenly disappeared (along with many other species), and thereafter mammals began the development and diversification that ultimately led to all of us.
The object that collided with Earth at the end of the Cretaceous period struck a shallow sea in what is now the Yucatán peninsula of Mexico. Its mass must have been more than a trillion tons, determined from study of a worldwide layer of sediment deposited from the dust cloud that enveloped the planet after its impact (Figure 7.10). First identified in 1979, this sediment layer is rich in the rare metal iridium and other elements that are relatively abundant in asteroids and comets, but exceedingly rare in Earth’s crust. Even though it was diluted by the material that the explosion excavated from the surface of Earth, this cosmic component can still be identified. In addition, this layer of sediment contains many minerals characteristic of the temperatures and pressures of a gigantic explosion, such as shocked quartz and impact spherules (which you read about in section 7.1!), as well as soot created by the global burning of trees .

The impact that led to the extinction of dinosaurs released energy equivalent to 5 billion Hiroshima-size nuclear bombs and excavated a crater 200 kilometers across and deep enough to penetrate through Earth’s crust. This large crater, named Chicxulub for a small town near its center, has subsequently been buried in sediment, but its outlines can still be identified (Figure 7.11). The explosion that created the Chicxulub crater lifted about 100 trillion tons of dust into the atmosphere. We can determine this amount by measuring the thickness of the sediment layer that formed when this dust settled to the surface.
7.2.4 Impacts and the Evolution of Life
It is becoming clear that many—perhaps most—mass extinctions in Earth’s long history resulted from a variety of other causes, but in the case of the dinosaur killer, the cosmic impact certainly played a critical role and may have been the “final straw” in a series of climactic disturbances that resulted in the “great dying.”
A catastrophe for one group of living things, however, may create opportunities for another group. Following each mass extinction, there is a sudden evolutionary burst as new species develop to fill the ecological niches opened by the event. Sixty-five million years ago, our ancestors, the mammals, began to thrive when so many other species died out. We are the lucky beneficiaries of this process.
Impacts by comets and asteroids represent the only mechanisms we know of that could cause truly global catastrophes and seriously influence the evolution of life all over the planet. As paleontologist Stephen Jay Gould of Harvard noted, such a perspective changes fundamentally our view of biological evolution. The central issues for the survival of a species must now include more than just its success in competing with other species and adapting to slowly changing environments, as envisioned by Darwin’s idea of natural selection. Also required is an ability to survive random global catastrophes due to impacts.
Still earlier in its history, Earth was subject to even larger impacts from the leftover debris of planet formation. We know that the Moon was struck repeatedly by objects larger than 100 kilometers in diameter—1000 times more massive than the object that wiped out most terrestrial life 65 million years ago. Earth must have experienced similar large impacts during its first 700 million years of existence. Some of them were probably violent enough to strip the planet of most its atmosphere and to boil away its oceans. Such events would sterilize the planet, destroying any life that had begun. Life may have formed and been wiped out several times before our own microbial ancestors took hold sometime about 4 billion years ago.
The fact that the oldest surviving microbes on Earth are thermophiles (adapted to very high temperatures) can also be explained by such large impacts. An impact that was just a bit too small to sterilize the planet would still have destroyed anything that lived in what we consider “normal” environments, and only the creatures adapted to high temperatures would survive. Thus, the oldest surviving terrestrial lifeforms are probably the remnants of a sort of evolutionary bottleneck caused by repeated large impacts early in the planet’s history.
7.2.5 Impacts in Our Future?
The impacts by asteroids and comets that have had such a major influence on life are not necessarily a thing of the past. In the full scope of planetary history, 65 million years ago was just yesterday. Earth actually orbits the Sun within a sort of cosmic shooting gallery, and although major impacts are rare, they are by no means over. Humanity could suffer the same fate as the dinosaurs, or lose a city to the much more frequent impacts like the one over Tunguska, unless we figure out a way to predict the next big impact and to protect our planet. The fact that our solar system is home to some very large planets in outer orbits may be beneficial to us; the gravitational fields of those planets can be very effective at pulling in cosmic debris and shielding us from larger, more frequent impacts.
Astronomers have urged that the first step in protecting Earth from future catastrophic impacts is to learn what potential impactors are out there. The objects most likely to impact Earth are near-Earth objects (NEOs), which are comets and asteroids whose orbits bring them close to our planet. Beginning in the 1990s, a few astronomers began to analyze these cosmic impact hazards and to persuade the government to support a search for potentially hazardous objects. (Note that a PHO is defined as an NEO that is typically larger than 140 meters in size and comes within 0.05 AU of Earth’s orbit. As a result, it has the potential to cause significant regional damage if an impact is to occur.) This lead to the establishment of the NASA Spaceguard Survey program in 1998, whose goal was to identify 90% of the 1 km-sized near-Earth asteroids in ten years time. The size of 1 kilometer was selected to include all asteroids capable of causing global damage, not merely local or regional effects. At 1 kilometer or larger, the impact could blast so much dust into the atmosphere that the sunlight would be dimmed for months, causing global crop failures—an event that could threaten the survival of our civilization. The Spaceguard goal of 90% was reached in 2012 when nearly a thousand of these 1-kilometer near-Earth asteroids had been found, along with more than 10,000 smaller asteroids.
How did astronomers know when they had discovered 90% of the larger asteroids? There are several ways to estimate the total number, even before they were individually located. One way is to look at the numbers of large craters on the dark lunar maria. Remember that these craters were made by impacts just like the ones we are considering. They are preserved on the Moon’s airless surface, whereas Earth soon erases the imprints of past impacts. Thus, the number of large craters on the Moon allows us to estimate how often impacts have occurred on both the Moon and Earth over the past several billion years. The number of impacts is directly related to the number of asteroids and comets on Earth-crossing orbits.
Another approach is to see how often the surveys (which are automated searches for faint points of light that move among the stars) rediscover a previously known asteroid. At the beginning of a survey, all the NEOs it finds will be new. But as the survey becomes more complete, more and more of the moving points the survey cameras record will be rediscoveries. The more rediscoveries each survey experiences, the more complete our inventory of these asteroids must be.
For Further Exploration
The Torino Impact Hazard Scale is a method for categorizing the impact hazard associated with near-Earth objects such as asteroids and comets. It is a communication tool for astronomers and the public to assess the seriousness of collision predictions by combining probability statistics and known kinetic damage potentials into a single threat value.
The Sentry Impact Risk page lists all potentially hazardous objects (PHOs) that have some risk of colliding with Earth in the next 100 Years. As of August 2025, 33 PHOs meet this criterion. The table also includes information such as the estimated diameter of the object, its Earth impact probability, and its Torino Scale.
Purdue University’s “Impact: Earth” calculator lets you input the characteristics of an approaching asteroid to determine the effect of its impact on our planet.
We have been relieved to find that none of the NEOs discovered so far is on a trajectory that will impact Earth within the foreseeable future. However, we can’t speak for the handful of asteroids larger than 1 kilometer that have not yet been found, or for the much more numerous smaller ones. It is estimated that there are a million NEOs capable of hitting Earth that are smaller than 1 kilometer but still large enough to destroy a city, and our surveys have found about 25% of them. Researchers who work with asteroid orbits estimate that for smaller (and therefore fainter) asteroids we are not yet tracking, we will have about a 5-second warning that one is going to hit Earth—in other words, we won’t see it until it enters the atmosphere. Clearly, this estimate gives us a lot of motivation to continue these surveys to track as many asteroids as possible.
Though entirely predictable over times of a few centuries, the orbits of Earth-approaching asteroids are unstable over long time spans as they are tugged by the gravitational attractions of the planets. These objects will eventually meet one of two fates: either they will impact one of the terrestrial planets or the Sun, or they will be ejected gravitationally from the inner solar system due to a near-encounter with a planet. The probabilities of these two outcomes are about the same. The timescale for impact or ejection is only about a hundred million years, very short compared with the 4-billion-year age of the solar system. Calculations show that only approximately one quarter of the current Earth-approaching asteroids will eventually end up colliding with Earth itself.
Many asteroids and comets have not yet been discovered, warranting the need for additional observation time and instruments dedicated to NEO detection and tracking. The ground-based Vera Rubin Telescope, which went live the summer of 2025, and the space-based telescope NEO Surveyor, which is currently under development by NASA, will be instrumental in achieving this goal. These asteroid surveys are one of the few really life-and-death projects carried out by astronomers, with a potential to help to save our planet from future major impacts.
7.2.6 Planetary Defense
One reason scientists are interested in the composition and interior structure of NEOs is that humans will probably need to defend themselves against an asteroid impact someday. If we ever found one of these asteroids on a collision course with us, we would need to deflect it so it would miss Earth. The most straightforward way to deflect it would be to crash a spacecraft into it, either slowing it or speeding it up, slightly changing its orbital period. If this were done several years before the predicted collision, the asteroid would miss the planet entirely—making an asteroid impact the only natural hazard that we could eliminate completely by the application of technology. Alternatively, such deflection could be done by exploding a nuclear bomb near the asteroid to nudge it off course, although the use of nuclear explosives in space raises other concerns.
To achieve a successful deflection by either technique, we need to know more about the density and interior structure of the asteroid. A spacecraft impact or a nearby explosion would have a greater effect on a solid rocky asteroid such as Eros than on a loose rubble pile. Think of climbing a sand dune compared to climbing a rocky hill with the same slope. On the dune, much of our energy is absorbed in the slipping sand, so the climb is much more difficult and takes more energy.
The NASA Planetary Protection Office has sponsored a first space mission to test asteroid deflection technology. The DART (Double Asteroid Redirection Test) was launched in November 2021, and eleven months later, the half-ton spacecraft collided with Dimorphos, the moon of asteroid Didymos. You can actually watch this experiment take place in the video below. Dimorphos is roughly the size of one of the great Egyptian pyramids. The automated spacecraft homed in on this tiny target and returned a spectacular set of images as it approached at 6 km/s. The primary mission objective was to measure the momentum the collision transferred to the target asteroid by tracking the change in the orbital period of Dimorphos using telescopes on Earth. The post-impact period was shortened by 32 minutes, which showed us that the large plume of ejected debris (visible in Earth-based telescopes) transferred additional momentum beyond that of the spacecraft impact itself, amplifying the collision by about a factor of three.
The Hera mission is a follow-up European spacecraft, launched in 2024, on a two-year flight to the Didymos system. It will rendezvous with Dimorphos to improve our knowledge of the DART results by measuring the mass and composition of Dimorphos and examining the impact crater we made.
Planetary defense has become a subject of increasing international interest. The United Nations has formed two technical committees on planetary defense, recognizing that the entire planet is at risk from asteroid impacts. However, the fundamental problem remains one of finding the NEO in time for defensive measures to be taken. We must be able to find the next impactor before it finds us. The search will expand significantly using the new Rubin wide-field telescope and a planned NASA search with the NEO Surveyor satellite, now under development.
Although it is extremely important for us to locate NEOs and investigate methods for deflecting potential impacts, we should all take comfort knowing that a devasting impact on Earth is very unlikely. Read the below webpage to learn just how unlikely it is.
- Impey, Chris. “Probability and Impacts.” Teach Astronomy.
Text Attributions
This text of this chapter is adapted from:
- Sections 8.5 and 13.2 of OpenStax’s Astronomy 2e (2022) by Andrew Fraknoi, David Morrison, and Sidney Wolff. Licensed under CC BY 4.0. Access full book for free at this link.
Media Attributions
- “DART Impact.” YouTube, uploaded by Johns Hopkins Applied Physics Laboratory, 26 Sept 2022, https://www.youtube.com/watch?v=N-OvnVdZP_8.
asteroids or comets that approach Earth's orbit; specifically, the object has an orbital path that, at some point, comes within 1.3 AU of the Sun and, thus, comes within 0.3 AU of Earth's orbital path