On truth and satisfaction

Now that we know how to assign values to our terms relative to a structure 𝐒\mathbf{S} and a variable assignment 𝐚\mathbf{a}, it is easy to see how each quantifier-free formula gets its value in the language β„’1\mathcal{L}_1. In particular, the calculations are essentially identical to those of β„’0\mathcal{L}_0, except if you encounter a variable (all of which will be free by assumption of the formulas being quantifier-free), you need to calculate with the assignment 𝐚\mathbf{a} instead of the interpretation function II.

In particular, for atomic formulas, of form Pn(t1,...,tn)P^n(t_1, …, t_n), their semantic value, as determined relative to 𝐒=βŸ¨πƒ,I⟩\mathbf{S}=\langle\mathbf{D}, I\rangle and the variable assignment 𝐚\mathbf{a} in 𝐃\mathbf{D}, will just be: π’βŠ¨Pn(t1,...,tn)[𝐚] 𝑖𝑓𝑓 ⟨I(t1)[𝐚],...,I(tn)[𝐚]⟩∈I(P)\mathbf{S}\models P^n(t_1, …, t_n)[\mathbf{a}] \textit{ iff } \langle I(t_1)[\mathbf{a}], …, I(t_n)[\mathbf{a}]\rangle \in I(P) In other words, for each term in our atomic formula, we check if their value under 𝐒\mathbf{S} and 𝐚\mathbf{a} is in the interpretation of PP or not. Notice that this means most of the time, the value of an atomic formula of β„’1\mathcal{L}_1 with free variables relative to a structure 𝐒\mathbf{S} will depend on the particular variable assignment we are calculating with.

One crucial thing regarding our terminology is that technically, if the atomic formula Pn(t1,...,tn)P^n(t_1, …, t_n) is open because it has some (trivially, free) variables occurring in it, then what π’βŠ¨Pn(t1,...,tn)[𝐚]\mathbf{S}\models P^n(t_1, …, t_n)[\mathbf{a}] says is not, in general, that the formula is true. Rather, what it says is that the formula Pn(t1,...,tn)P^n(t_1, …, t_n) is satisfiable in 𝐒\mathbf{S}, and specifically, satisfied in 𝐒\mathbf{S} under 𝐚\mathbf{a}. The formula cannot be called true because relative to some other assignment 𝐛\mathbf{b}, it may not be the case that π’βŠ¨Pn(t1,...,tn)[𝐛]\mathbf{S}\models P^n(t_1, …, t_n)[\mathbf{b}].

Indeed, truth in a structure 𝐒\mathbf{S} will be defined just as satisfaction in 𝐒\mathbf{S} under every variable assignment 𝐚\mathbf{a} in 𝐃\mathbf{D}. And incidentally, sentences will get their value independent of any particular assignment 𝐚\mathbf{a} so they will all be truth-apt; either true or false in a structure. This is partly why sentences are so crucial. Because we are interested (as of now) in truth, and not satisfaction under an assignment.

Accordingly, to say that a formula XX is true in 𝐒\mathbf{S}, we will suppress the notation [𝐚][\mathbf{a}] (as by definition, it is irrelevant), and write: π’βŠ¨X\mathbf{S} \models X If we want to say that a formula XX is satisfied in 𝐒\mathbf{S} under 𝐚\mathbf{a}, we write: π’βŠ¨X[𝐚]\mathbf{S} \models X[\mathbf{a}]

You can think of the distinction between satisfaction under an assignment and truth as follows. If you say something like β€œxx is tall”, you cannot really say that this is either a true or false statement as it is. Clearly, if we understand β€˜xx’ as former professional basketball player Yao Ming (height: 7’ 6″), it would be β€˜true’, and if we understand β€˜xx’ as movie star Danny DeVito (height: 4’10″), it would be β€˜false’. But in itself, it is neither true nor false, because xx may stand for anything! On the other hand, the sentence β€œYao Ming is tall” is true, because he is tall independent of how we understand β€˜xx’ (because it is not even part of the sentence).

For example, let 𝐒=βŸ¨πƒ,I⟩\mathbf{S}=\langle\mathbf{D}, I\rangle be such that 𝐃=β„•\mathbf{D}=\mathbb{N}, I(𝔠n)=nΓ—2I(\mathfrak{c}_{n})=n \times 2, and let 𝐚(𝐱n)=n+7\mathbf{a}(\mathbf{x}_{n})= n + 7 (nβˆˆβ„•n \in \mathbb{N}) as before. Let I(𝔓13)={⟨n,j,k⟩∣n+j=k}I(\mathfrak{P}^{3}_{1})=\{\langle n, j, k\rangle\mid n+j=k\}, and I(𝔓23)={⟨n,j,k⟩∣nΓ—j=k}I(\mathfrak{P}^{3}_{2})=\{\langle n, j, k\rangle\mid n\times j=k\}. Then, consider an atomic formula, such as: 𝔓13(𝔠1,𝔠3,𝐱5)\mathfrak{P}^{3}_{1}(\mathfrak{c}_{1}, \mathfrak{c}_{3}, \mathbf{x}_{5}) Is the above formula satisfied in 𝐒\mathbf{S} under to the assignment 𝐚\mathbf{a}? Well, I(𝔠1)[𝐚]=2I(\mathfrak{c}_{1})[\mathbf{a}]=2, I(𝔠3)[𝐚]=6I(\mathfrak{c}_{3})[\mathbf{a}]=6, and I(𝐱5)[𝐚]=12I(\mathbf{x}_{5})[\mathbf{a}]=12. On the other hand, 2+6β‰ 122+6\neq 12, so this triple is not in I(𝔓13)I(\mathfrak{P}^{3}_{1}). Thus: π’βŠ¨ΜΈπ”“13(𝔠1,𝔠3,𝐱5)[𝐚]\mathbf{S} \not\models \mathfrak{P}^{3}_{1}(\mathfrak{c}_{1}, \mathfrak{c}_{3}, \mathbf{x}_{5})[\mathbf{a}] Of course, as we discussed above, a well-chosen 𝐱5\mathbf{x}_{5}-variant of 𝐚\mathbf{a} may very well satisfy this formula in 𝐒\mathbf{S} relative to it. Of course, this is easy to specify with our explicit notation: π’βŠ¨π”“13(𝔠1,𝔠3,𝐱5)[𝐚8𝐱5]\mathbf{S} \models \mathfrak{P}^{3}_{1}(\mathfrak{c}_{1}, \mathfrak{c}_{3}, \mathbf{x}_{5})[\mathbf{a}^{\mathbf{x}_{5}}_8] Clearly, we can also consider: π’βŠ¨π”“13(𝔠1,𝔠3,𝐱1)[𝐚].\mathbf{S} \models \mathfrak{P}^{3}_{1}(\mathfrak{c}_{1}, \mathfrak{c}_{3}, \mathbf{x}_{1})[\mathbf{a}]. And in fact, with a different change in our formula, we get: π’βŠ¨π”“23(𝔠1,𝔠3,𝐱5)[𝐚]\mathbf{S} \models \mathfrak{P}^{3}_{2}(\mathfrak{c}_{1}, \mathfrak{c}_{3}, \mathbf{x}_{5})[\mathbf{a}]

Exercise 7.2. Explain in detail, demonstrating the calculations at each turn, why it is the case that:

  1. π’βŠ¨π”“13(𝔠1,𝔠3,𝐱1)[𝐚]\mathbf{S} \models \mathfrak{P}^{3}_{1}(\mathfrak{c}_{1}, \mathfrak{c}_{3}, \mathbf{x}_{1})[\mathbf{a}]

  2. π’βŠ¨π”“23(𝔠1,𝔠3,𝐱5)[𝐚]\mathbf{S} \models \mathfrak{P}^{3}_{2}(\mathfrak{c}_{1}, \mathfrak{c}_{3}, \mathbf{x}_{5})[\mathbf{a}]

  3. π’βŠ¨ΜΈπ”“23(𝔠1,𝔠3,𝐱5)[𝐚8𝐱5]\mathbf{S} \not\models \mathfrak{P}^{3}_{2}(\mathfrak{c}_{1}, \mathfrak{c}_{3}, \mathbf{x}_{5})[\mathbf{a}^{\mathbf{x}_{5}}_8]

  4. π’βŠ¨ΜΈπ”“13(𝔠1,𝔠3,𝐱1)[𝐚12𝐱1]\mathbf{S} \not\models \mathfrak{P}^{3}_{1}(\mathfrak{c}_{1}, \mathfrak{c}_{3}, \mathbf{x}_{1})[\mathbf{a}^{\mathbf{x}_{1}}_{12}]


Remark 7.3. Here is what your answer should look like for each of the above. Let’s take π’βŠ¨π”“13(c3,c2,x3)[𝐚]\mathbf{S} \models \mathfrak{P}^{3}_{1}(c_3, c_2, x_3)[\mathbf{a}].

First, by definition, π’βŠ¨π”“13(c3,c2,x3)[𝐚]\mathbf{S} \models \mathfrak{P}^{3}_{1}(c_3, c_2, x_3)[\mathbf{a}] iff ⟨I(c3)[𝐚],I(c2)[𝐚],I(x3)[𝐚]⟩∈I(𝔓13)\langle I(c_3)[\mathbf{a}], I(c_2)[\mathbf{a}], I(x_3)[\mathbf{a}]\rangle \in I(\mathfrak{P}^{3}_{1}). Then, you need to calculate the value of each term, and check it against the interpretation of the predicate. In succession:

  1. I(c3)[𝐚]=I(c3)=3Γ—2=6I(c_3)[\mathbf{a}]=I(c_3)=3 \times 2=6;

  2. I(c2)[𝐚]=I(c2)=2Γ—2=4I(c_2)[\mathbf{a}]=I(c_2)=2 \times 2=4;

  3. I(x3)[𝐚]=𝐚(x3)=3+7=10I(x_3)[\mathbf{a}]=\mathbf{a}(x_3)=3 + 7=10.

Thus, the question is whether ⟨6,4,10⟩∈I(𝔓13)\langle 6, 4, 10\rangle \in I(\mathfrak{P}^{3}_{1}). By definition, ⟨6,4,10⟩∈I(𝔓13)\langle 6, 4, 10\rangle \in I(\mathfrak{P}^{3}_{1}) iff 6+4=106+4=10, which is the case, so ⟨6,4,10⟩∈I(𝔓13)\langle 6, 4, 10\rangle \in I(\mathfrak{P}^{3}_{1}). Thus, π’βŠ¨π”“13(c3,c2,x3)[𝐚]\mathbf{S} \models \mathfrak{P}^{3}_{1}(c_3, c_2, x_3)[\mathbf{a}].


As far as the connectives go, there is no change in how their meaning is specified relative to their less complex constituents, except again, we are calculating with both II and 𝐚\mathbf{a} at each turn.

Thus, we get that:

  1. π’βŠ¨Β¬X[𝐚]\mathbf{S} \models \neg X[\mathbf{a}] if, and only if, π’βŠ¨ΜΈX[𝐚]\mathbf{S} \not\models X[\mathbf{a}];

  2. π’βŠ¨(X∧Y)[𝐚]\mathbf{S} \models (X \wedge Y)[\mathbf{a}] if, and only if, π’βŠ¨X[𝐚]\mathbf{S} \models X[\mathbf{a}] and π’βŠ¨Y[𝐚]\mathbf{S}\models Y[\mathbf{a}];

  3. π’βŠ¨(X∨Y)[𝐚]\mathbf{S} \models (X \vee Y)[\mathbf{a}] if, and only if, π’βŠ¨X[𝐚]\mathbf{S} \models X[\mathbf{a}] or π’βŠ¨Y[𝐚]\mathbf{S}\models Y[\mathbf{a}] (or both);

  4. π’βŠ¨(Xβ†’Y)[𝐚]\mathbf{S} \models (X \rightarrow Y)[\mathbf{a}] if, and only if, if π’βŠ¨X[𝐚]\mathbf{S} \models X[\mathbf{a}], then π’βŠ¨Y[𝐚]\mathbf{S} \models Y[\mathbf{a}].

Exercise 7.3. Provide two complex formulas distinct from those given in Exercise 7.2 that are satisfied under 𝐚\mathbf{a}, and similarly, provide two complex formulas distinct from them that are unsatisfied under 𝐚\mathbf{a} in the structure specified. In each case, provide a detailed derivation to show why that is the case.


Remark 7.4. Your answers should look similar here to your answers in Exercise 7.2, except now you have to include the calculations for the connectives too. Take for example ¬𝔓23(c1,x4,c7)βˆ¨π”“13(x9,x1,x4)\neg\mathfrak{P}^{3}_{2}(c_1, x_4, c_7) \vee \mathfrak{P}^{3}_{1}(x_9, x_1, x_4). Is it the case that π’βŠ¨Β¬π”“23(c1,x4,c7)βˆ¨π”“13(x9,x1,x4)[𝐚]\mathbf{S} \models \neg\mathfrak{P}^{3}_{2}(c_1, x_4, c_7) \vee \mathfrak{P}^{3}_{1}(x_9, x_1, x_4)[\mathbf{a}]?

Well, π’βŠ¨Β¬π”“23(c1,x4,c7)βˆ¨π”“13(x9,x1,x4)[𝐚]\mathbf{S} \models \neg\mathfrak{P}^{3}_{2}(c_1, x_4, c_7) \vee \mathfrak{P}^{3}_{1}(x_9, x_1, x_4)[\mathbf{a}] iff π’βŠ¨Β¬π”“23(c1,x4,c7)[𝐚]\mathbf{S} \models \neg\mathfrak{P}^{3}_{2}(c_1, x_4, c_7)[\mathbf{a}] or π’βŠ¨π”“13(x9,x1,x4)[𝐚]\mathbf{S} \models \mathfrak{P}^{3}_{1}(x_9, x_1, x_4)[\mathbf{a}]. And π’βŠ¨Β¬π”“23(c1,x4,c7)[𝐚]\mathbf{S} \models \neg\mathfrak{P}^{3}_{2}(c_1, x_4, c_7)[\mathbf{a}] iff π’βŠ¨ΜΈπ”“23(c1,x4,c7)[𝐚]\mathbf{S} \not\models \mathfrak{P}^{3}_{2}(c_1, x_4, c_7)[\mathbf{a}].

Let us consider the simpler case first, that of 𝔓13(x9,x1,x4)\mathfrak{P}^{3}_{1}(x_9, x_1, x_4). Now π’βŠ¨π”“13(x9,x1,x4)[𝐚]\mathbf{S} \models \mathfrak{P}^{3}_{1}(x_9, x_1, x_4)[\mathbf{a}] iff ⟨I(x9)[𝐚],I(x1)[𝐚],I(x4)[𝐚]⟩∈I(𝔓13)\langle I(x_9)[\mathbf{a}], I(x_1)[\mathbf{a}], I(x_4)[\mathbf{a}]\rangle \in I(\mathfrak{P}^{3}_{1}). Taking each term in succession:

  1. I(x9)[𝐚]=𝐚(x9)=9+7=16I(x_9)[\mathbf{a}]=\mathbf{a}(x_9)=9+7=16;

  2. I(x1)[𝐚]=𝐚(x1)=1+7=8I(x_1)[\mathbf{a}]=\mathbf{a}(x_1)=1+7=8;

  3. I(x4)[𝐚]=𝐚(x4)=4+7=11I(x_4)[\mathbf{a}]=\mathbf{a}(x_4)=4+7=11.

Substituting back, ⟨16,8,11βŸ©βˆ‰I(𝔓13)\langle 16, 8, 11\rangle \notin I(\mathfrak{P}^{3}_{1}), because of course, 16+8β‰ 1116+8 \neq 11. So π’βŠ¨ΜΈπ”“13(x9,x1,x4)[𝐚]\mathbf{S} \not\models \mathfrak{P}^{3}_{1}(x_9, x_1, x_4)[\mathbf{a}].

For the other side of the disjunction, we need to consider whether π’βŠ¨ΜΈπ”“23(c1,x4,c7)[𝐚]\mathbf{S} \not\models \mathfrak{P}^{3}_{2}(c_1, x_4, c_7)[\mathbf{a}] is the case. Again, π’βŠ¨ΜΈπ”“23(c1,x4,c7)[𝐚]\mathbf{S} \not\models \mathfrak{P}^{3}_{2}(c_1, x_4, c_7)[\mathbf{a}] iff ⟨I(c3)[𝐚],I(x4)[𝐚],I(c7)[𝐚]βŸ©βˆ‰I(𝔓23)\langle I(c_3)[\mathbf{a}], I(x_4)[\mathbf{a}], I(c_7)[\mathbf{a}]\rangle \notin I(\mathfrak{P}^{3}_{2}). We then calculate each term value:

  1. I(c3)[𝐚]=I(c3)=3Γ—2=6I(c_3)[\mathbf{a}]=I(c_3)=3\times 2=6;

  2. I(x4)[𝐚]=𝐚(x4)=4Γ—2=8I(x_4)[\mathbf{a}]=\mathbf{a}(x_4)=4 \times 2=8;

  3. I(c7)[𝐚]=I(c7)=7+7=14I(c_7)[\mathbf{a}]=I(c_7)=7+7=14.

Substituting back, we get ⟨6,8,14⟩\langle 6, 8, 14\rangle, which is not in I(𝔓23)I(\mathfrak{P}^{3}_{2}), because 6Γ—8β‰ 146 \times 8 \neq 14. Thus, π’βŠ¨ΜΈπ”“23(c1,x4,c7)[𝐚]\mathbf{S} \not\models \mathfrak{P}^{3}_{2}(c_1, x_4, c_7)[\mathbf{a}]. So it is the case that π’βŠ¨Β¬π”“23(c1,x4,c7)[𝐚]\mathbf{S} \models \neg \mathfrak{P}^{3}_{2}(c_1, x_4, c_7)[\mathbf{a}].

So π’βŠ¨Β¬π”“23(c1,x4,c7)βˆ¨π”“13(x9,x1,x4)[𝐚]\mathbf{S}\models \neg\mathfrak{P}^{3}_{2}(c_1, x_4, c_7) \vee \mathfrak{P}^{3}_{1}(x_9, x_1, x_4)[\mathbf{a}].


License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Learning Logic Backwards Copyright © by Peter Susanszky is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book