"

Sec. 1.6 – Adding and Subtracting in Bases

Chapter 1, Section 6

Math Topics – Adding and Subtracting in Bases

Elementary Education – understanding adding and subtracting in base ten through adding and subtracting in other bases

In this section, we are going to dive deep into adding and subtracting in different bases. Why? Because that will help everyone understand adding in base ten more deeply, which will help guide how you teach your future students. It’s not just about “carry the 1”! It’s about math making sense — for everyone!

Adding in Base 5

In the previous homework, we issued a counting challenge! If you are counting in base 5, what’s the next number after 1245?

This is that same as asking for the answer to

1245

+ 15

Think about the Bizz buzz counting game!

Example 1 Count one more than 1245 using the Bizz Buzz game.

The number 1245 means we have counted one buzz, 2 bizzes, and then counted to 4 after that:

Buzz Bizz Ones
1 2 4

To count one higher, the next person might want to say 5, but in Buzz Buzz, we can’t say 5, so instead they must say “bizz.” Now we have counted to 3 bizzes.

Buzz Bizz Ones
1 3 0
Example 2 Add 1245 + 1 using base 5 blocks and trading.
one base five flat, 2 rods and 4 units, plus one unit

In base 5, when you get 5 units, you can trade them for 1 rod.

Circle the 5 units, trade for one rod

We can also show this as “carrying the 1”:

1

1245

+ 15

1305

This is the same answer as one buzz, 3 bizzes, and no ones.

Question: Now you try!

The general principle, when adding in base 5, is to gather five of one kind of block to trade for one of the next higher block.

Example 3 Add 1415 + 1325 using base 5 blocks and trading.
One flat, 4 rods, 1 unit, plus 1 flat, 3 rods, 2 units. 5 of the rods are circled, trade for one more flat

First we add the ones: 1 + 2 is 3, with no trading needed. Then we add 4 rods + 3 rods. We trade 5 of the rods for 1 flat, and we have two left over. Finally, we add the flats 1+1+1 = 3 flats. This is the base 5 number 3235.

We can also show the trading as “carrying the 1”:

1

1415

+ 1325

3235

Question: Now you try!

Adding in Bases

What about if we are in a base other than 5?

Adding in other bases is similar to base 5, except that we use our base as our trading amount. For example, in base 7 we would trade 7 of an object for one of the next object higher: 7 units for a rod, 7 rods for a flat, and so forth. In base 8, we trade 8 for 1, and in base 3, we trade 3 for one. In base 12, we would have to have 12 of an object in order to trade for one of the next higher place value.

In each base, when we get up to the base value, we trade for one of the next higher place value.

Example 4 Try adding each of the following.

You can draw the blocks, or add without them – it’s your choice. It is okay to keep using the blocks for as long as you need, even the whole semester! It is not a bad thing to need a physical representation. (I don’t think counting on your fingers is bad, either!)

Base 7 Base 8 Base 3 Base 12
   1647
+ 1517
   2678
+ 4648
   1113
+ 2023
  56712
+ 7312

Here is the first problem, written in base 7 blocks, with the grid on each block shown, so you can see the size:

One base 7 flat (a 7 by 7 square), 6 rods that are each 7 high, 4 units added to One base 7 flat (a 7 by 7 square), 5 rods that are each 7 high, 1 unit

To add, first gather together all the units. Do you have enough units, that when you put them together, you would have 1 whole rod? What about the rods, do you have enough rods, that if you put them together, you would have a flat? Find the answer using the blocks, then look below for the result. Try the other base problems in a similar way.

Try each one before looking below for the answer.

Tip for the base 12 problem — do not trade unless you have 12 or more!

Base 7 Base 8 Base 3 Base 12
   1
1647
+ 1517
   3457
    1 1
2678
+ 4648
   7538
   1 1
1113
+ 2023
  10203
  1
56712
+ 7312
  61T12

Blocks for the first problem, in base 7, are shown below.

7 rods are circled, then traded for one base 7 flat.

Notice that for the base 12 problem, 7 + 3 = 10, which is not enough to trade. Write T (or any other letter for 10) in that column. Remember that you cannot write 611012 instead of 61T12 because 611012 looks like 0 in the ones place instead of ten in the ones place.

Question: Now you try!

Subtracting in Bases

Subtracting in base 5 works very similarly to adding in base 5, but now we trade in the other direction: we trade one for five of the next smaller sized block.

Example 5 Subtract 1205 – 1 using base 5 blocks and trading.
one flat and two rods, minus one unit

We can’t take away one unit as this is, so we trade 1 rod for 5 units.

one rod crossed out, trade for 5 units

The 5 new units can now allow us to subtract 1 unit to get 4 units. We end up with 1 flat, one rod (since we traded a rod) and 4 units. The “short” version of this is to take 1205, cross out the 2 and make it a 1, then add 5 ones to the zero.

  1210+55

  – 15

1145

Take a moment to appreciate how confusing it would have been if we had introduced base 5 subtraction to you that way! Yes, it’s great if you can get to be able to do that, but it’s also not necessary. What’s necessary is understanding what you are doing!

Example 6 Try subtracting each of the following.

You can draw the blocks, or subtract without them. In each problem, if we do not have enough up top to subtract from, we trade one for the base value in the next lower place value. In other words, in base 7, we trade 1 for 7, in base 8, we trade 1 for 8, etc.

Base 7 Base 8 Base 3
   2347
– 1517
  56312
– 2712
   4128
– 2678

Here is the first problem, written in base 7 blocks, with the grid on each block shown, so you can see the size:

2 base 7 flats (7 by 7) + 2 base 7 rods (7 long) + 4 units, added to 1 base 7 flats, 5 base 7 rods and one unit

To subtract, ask yourself if you have enough up top to take the bottom blocks away. If not, break apart one of the bocks of the next size up. Remember that it is okay to draw blocks for each problem, if that is what you need to do to understand it.

Look below for the answers.
Base 7 Base 12 Base 8
   1 +7
2347
– 1517
537
   5 +12
56312
– 2712
53812
   3 +87 +8
4128
– 2678
1238

It may be difficult to understand each step shown up, just as when we tell children to “borrow from the 2” in base ten subtraction, so let’s look at the first one of these with the blocks for that base.

In this base 7 example, we started with 4 units minus one unit, to get three units. In the next place value, we didn’t have enough rods up top to be able to subtract 5 rods, so we broke apart on of the flats into 7 rods, and added those to the three we already had. Then we could subtract 10 rods – 5 rods = 5 rods.

 

Question: Now you try!

Adding and Subtracting in binary

Two on/off switches that are labeled 1 and 0

In binary (base 2), you can only have a 1 or a 0 for a result.

Example 7 Add 12 + 12 in base 2

When you add 1 + 1 you get 2, which you trade for one in the next column, with 0 left:

12

+ 12

102

You could also convert to see why this works: in base 10, 1 + 1 = 2, which converts to 102.

22 = 4 21 = 2 20 = 1
1 0
Example 8 Subtract 102 – 12 in base 2

+2

102

12

   12

Here, we have to “borrow” from the 1 in order to subtract. We trade the 1 for 2 in the smaller place value.

Question: Now you try!

 

License

College Mathematics for Elementary Education with Algebra Extensions Copyright © by Kathleen Offenholley and Fatima Prioleau. All Rights Reserved.

Share This Book