Chapter 11: Hearing in Complex Environments
11.1. What is Language?
Male songbirds, such as canaries and finches, sing songs to attract mates and to protect territory, and chimpanzees use a combination of facial expressions, sounds, and actions, such as slapping the ground, to convey aggression (de Waal, 1989). Honeybees use a waggle dance to direct other bees to the location of food sources (von Frisch, 1956). The language of vervet monkeys is relatively advanced in the sense that they use specific sounds to communicate specific meanings. Vervets make different calls to signify that they have seen either a leopard, a snake, or a hawk (Seyfarth & Cheney, 1997).
Despite their wide abilities to communicate, efforts to teach animals to use language have had only limited success. One of the early efforts was made by Catherine and Keith Hayes, who raised a chimpanzee named Viki in their home along with their own children. But Viki learned little and could never speak (Hayes & Hayes, 1952). Researchers speculated that Viki’s difficulties might have been in part because she could not create the words in her vocal cords, and so subsequent attempts were made to teach primates to speak using sign language or boards on which they can point to symbols.
Allen and Beatrix Gardner worked for many years to teach a chimpanzee named Washoe to sign using ASL. Washoe, who lived to be 42 years old, could label up to 250 different objects and make simple requests and comments, such as “please tickle” and “me sorry” (Fouts, 1997). Washoe’s adopted daughter Loulis, who was never exposed to human signers, learned more than 70 signs simply by watching her mother sign.
The most proficient nonhuman language speaker is Kanzi, a bonobo who lives at the Language Learning Center at Georgia State University (Savage-Rumbaugh & Lewin, 1994). As you can see in “Video Clip: Language Recognition in Bonobos,” Kanzi has a propensity for language that is in many ways similar to humans. He learned faster when he was younger than when he got older, he learns by observation, and he can use symbols to comment on social interactions, rather than simply for food treats. Kanzi can also create elementary syntax and understand relatively complex commands. Kanzi can make tools and can even play the video game Pac-Man.
And yet even Kanzi does not have a true language in the same way that humans do. Human babies learn words faster and faster as they get older, but Kanzi does not. Each new word he learns is almost as difficult as the one before. Kanzi usually requires many trials to learn a new sign, whereas human babies can speak words after only one exposure. Kanzi’s language is focused primarily on food and pleasure and only rarely on social relationships. Although he can combine words, he generates few new phrases and cannot master syntactic rules beyond the level of about a two-year-old human child (Greenfield & Savage-Rumbaugh, 1991).
In sum, although many animals communicate, none of them has a true language. With some exceptions, the information that can be communicated in nonhuman species is limited primarily to displays of liking or disliking, and related to basic motivations of aggression and mating. Humans also use this more primitive type of communication, in the form of nonverbal behaviors such as eye contact, touch, hand signs, and interpersonal distance, to communicate their like or dislike for others, but they (unlike animals) also supplant this more primitive communication with language. Although other animal brains share similarities to ours, only the human brain is complex enough to create language.
This material comes from Klein, C. (2023). The essentials of cognitive psychology. https://pressbooks.cuny.edu/cogpsych/chapter/chapter-8-language/ CC 4.0
References
Fouts, R. (1997). Next of kin: What chimpanzees have taught me about who we are. New York, NY: William Morrow.
Hayes, K. J., and Hayes, C. (1952). Imitation in a home-raised chimpanzee. Journal of Comparative and Physiological Psychology, 45, 450–459.
Savage-Rumbaugh, S., & Lewin, R. (1994). Kanzi: The ape at the brink of the human mind. Hoboken, NJ: John Wiley & Sons.
Seyfarth, R. M., & Cheney, D. L. (1997). Behavioral mechanisms underlying vocal communication in nonhuman primates. Animal Learning & Behavior, 25(3), 249–267.
von Frisch, K. (1956). Bees: Their vision, chemical senses, and language. Ithaca, NY: Cornell University Press.